
Univariate Optimization

October 20, 2025

Content Overview

▶ Convex Sets / Convex Functions

▶ Unimodal Functions

▶ Univariate Optimization Methods (Golden Section Search,
Brent’s Method)

▶ Stopping Criteria

Optimization in Machine Learning

Mathematical Concepts:
Convexity

Learning goals
Convex sets

Convex functions

CONVEX SETS

A set of S ⊆ Rd is convex, if for all x, y ∈ S and all t ∈ [0, 1] the
following holds:

x + t(y− x) ∈ S
Intuitively: Connecting line between any x, y ∈ S lies completely in S.

Left: convex set. Right: not convex. (Source: Wikipedia)

© Optimization in Machine Learning – 1 / 9

CONVEX FUNCTIONS

Let f : S → R, S convex. f is convex if for all x, y ∈ S and all t ∈ [0, 1]

f (x + t(y− x)) ≤ f (x) + t(f (y)− f (x)).

Intuitively: Connecting line lies above function.

●
x

●
y

f(x) + t[f(y
) − f(x)]

●

● f(x + t[y − x])
0

2

4

6

1 2 3 4
x

y

●

x

●

y

f(x) + t[f(y) − f(x)]
●

●

f(x + t[y − x])
0.0

0.5

1.0

1.5

2.0

−1 0 1 2 3
x

y

Left: Strictly convex function. Right: Convex, but not strictly.

Strictly convex if “<” instead of “≤”. Concave (strictly) if the inequality
holds with “≥” (“>”), respectively.

Note: f (strictly) concave⇔−f (strictly) convex.

© Optimization in Machine Learning – 2 / 9

EXAMPLES

Convex function: f (x) = |x |
Proof:

f (x + t(y − x)) = |x + t(y − x)| = |(1 − t)x + t · y |
≤ |(1 − t)x |+ |t · y | = (1 − t)|x |+ t|y |
= |x |+ t · (|y | − |x |) = f (x) + t · (f (y)− f (x))

Concave function: f (x) = log(x)

Neither nor: f (x) = exp(−x2) (but log-concave)

© Optimization in Machine Learning – 3 / 9

OPERATIONS PRESERVING CONVEXITY

Nonnegatively weighted summation: Weights w1, . . . ,wn ≥ 0,
convex functions f1, . . . , fn: w1f1 + · · ·+ wnfn also convex
In particular: Sum of convex functions also convex

Composition: g convex, f linear: h = g ◦ f also convex
Proof:

h(x + t(y − x)) = g(f (x + t(y − x)))

= g(f (x) + t(f (y)− f (x)))

≤ g(f (x)) + t(g(f (y))− g(f (x)))

= h(x) + t(h(y)− h(x))

Elementwise maximization: f1, . . . , fn convex functions:
g(x) = max {f1(x), . . . , fn(x)} also convex

© Optimization in Machine Learning – 4 / 9

CONVEX FUNCTIONS IN OPTIMIZATION

For a convex function, every local optimum is also a global one
⇒ No need for involved global optimizers, local ones are enough

A strictly convex function has at most one optimal point

Example for strictly convex function without optimum: exp on R

●0

2

4

6

1 2 3 4
x

y

0.0

0.5

1.0

1.5

2.0

−1 0 1 2 3
x

y

●

●

−2

0

2

4

6

−2 −1 0 1 2
x

y

●0

2

4

6

1 2 3 4
x

y

0.0

0.5

1.0

1.5

2.0

−1 0 1 2 3
x

y

●

●

−2

0

2

4

6

−2 −1 0 1 2
x

y

Left: Strictly convex; exactly one local minimum, which is also global. Middle: Convex,
but not strictly; all local optima are also global ones but not unique. Right: Not convex.

© Optimization in Machine Learning – 8 / 9

Unimodal Functions: Definition

Definition
A function f : R→ R is called unimodal if it has exactly one local
optimum (minimum or maximum), which is also the global
optimum.

Formal Definition:
▶ For a unimodal function with minimum at x∗:

▶ f is strictly decreasing on (−∞, x∗]
▶ f is strictly increasing on [x∗,∞)

▶ For a unimodal function with maximum at x∗:
▶ f is strictly increasing on (−∞, x∗]
▶ f is strictly decreasing on [x∗,∞)

Unimodal Functions: Key Properties

Important Properties:

▶ Any local optimum is also the global optimum

▶ Optimization is easier: no risk of getting stuck in local optima

Example 1: Quadratic Function (Convex & Unimodal)

f (x) = x2

Properties:

▶ Convex

▶ Unimodal

▶ Global minimum at x∗ = 0

▶ Strictly decreasing on
(−∞, 0]

▶ Strictly increasing on [0,∞) −2 −1 1 2

2

4

x∗ x

f (x)

Example 2: Absolute Value

f (x) = −|x |

Properties:

▶ NOT convex (concave)

▶ Unimodal

▶ Global maximum at x∗ = 0

▶ Strictly increasing on
(−∞, 0]

▶ Strictly decreasing on [0,∞)

−2 −1 1 2

−2

−1

x∗

xf (x)

Counter-Example: Non-Unimodal Function

f (x) = x3 − 3x

Properties:

▶ NOT unimodal
▶ Has two local optima:

▶ Local max at x = −1
▶ Local min at x = 1

▶ Neither is global

▶ More challenging to
optimize

−2 −1 1 2

−2

2
max

min

x

f (x)

Univariate Optimization: Overview

Definition: Univariate optimization involves finding the minimum
or maximum of a function f : R→ R.
Assumptions: For algorithms discussed here, we assume that f is
unimodal.
Common Methods:

▶ Golden Section Search

▶ Brent’s Method

Golden section -
https://sketchplanations.com/the-golden-ratio

Scipy optimize - https:
//docs.scipy.org/doc/scipy/reference/optimize.html

https://sketchplanations.com/the-golden-ratio
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html

Optimization in Machine Learning

Univariate optimization
Golden ratio

Learning goals
Simple nesting procedure

Golden ratio

UNIVARIATE OPTIMIZATION

Let f : R→ R.

Goal: Iteratively improve eval points. Assume function is unimodal. Will
not rely on gradients, so this also works for black-box problems.

© Optimization in Machine Learning – 1 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Always maintain three points: left, right, and current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Propose random point in interval.

NB: Later we will define the optimal choice for a new proposal.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Compare proposal against current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

If it is better: proposal becomes current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

New search interval: around current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Propose a random point.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Compare proposal against current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

If it is better: proposal becomes current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

New search interval: around current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Propose a random point.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

Compare proposal against current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

If it is better: proposal becomes current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Let f : R→ R.

New search interval: around current best.

© Optimization in Machine Learning – 2 / 12

SIMPLE NESTING PROCEDURE

Initialization: Search interval (x left, x right), x left < x right

Choose xbest randomly.

For t = 0, 1, 2, ...
Choose xnew randomly in [x left, x right]
If f (xnew) < f (xbest):

xbest ← xnew

New interval: Points around xbest

© Optimization in Machine Learning – 3 / 12

GOLDEN RATIO

Key question: How can xnew be chosen better than randomly?

Insight 1: Always in bigger subinterval to maximize reduction.

Insight 2: xnew symmetrically to xbest for uniform reduction.

Consider two hypothetical outcomes xnew: fnew ,a and fnew ,b.

© Optimization in Machine Learning – 4 / 12

GOLDEN RATIO / 2

If fnew ,a is the outcome, xbest stays best and we search around xbest :

[xleft , xnew]

© Optimization in Machine Learning – 5 / 12

GOLDEN RATIO / 3

If fnew ,b is outcome, xnew becomes best point and search around xnew :

[xbest , xright]

© Optimization in Machine Learning – 6 / 12

GOLDEN RATIO / 4

For uniform reduction, require the two potential intervals equal sized:

b := xright − xbest = xnew − xleft

© Optimization in Machine Learning – 7 / 12

GOLDEN RATIO / 5

One iteration ahead: require again the intervals to be of same size.

c := xbest − xleft = xright − xnew

© Optimization in Machine Learning – 8 / 12

GOLDEN RATIO / 6

To summarize, we require:

a = x right − x left ,

b = xright − xbest = xnew − xleft

c = xbest − xleft = xright − xnew

© Optimization in Machine Learning – 9 / 12

GOLDEN RATIO / 7

We require the same percentage improvement in each iteration

For φ reduction factor of interval sizes (a to b, and b to c)

φ :=
b
a
=

c
b

φ2 =
b
a
· c

b
=

c
a

Divide a = b + c by a:

a
a

=
b
a
+

c
a

1 = φ+ φ2

0 = φ2 + φ− 1

Unique positive solution is φ =
√

5−1
2 ≈ 0.618.

© Optimization in Machine Learning – 10 / 12

GOLDEN RATIO / 8

With xnew we always go φ percentage points into the interval.

Given x left and x right it follows

xbest = x right − φ(x right − x left)

= x left + (1− φ)(x right − x left)

and due to symmetry

xnew = x left + φ(x right − x left)

= x right − (1− φ)(x right − x left).

© Optimization in Machine Learning – 11 / 12

GOLDEN RATIO / 9

Termination criterion:

A reasonable choice is the absolute error, i.e. the width of the last
interval:

|xbest − xnew | < τ

In practice, more complicated termination criteria are usually
applied, for example in Numerical Recipes in C, 2017

|x right − x left | ≤ τ(|xbest |+ |xnew |)
is proposed as a termination criterion.

© Optimization in Machine Learning – 12 / 12

Optimization in Machine Learning

Univariate optimization
Brent’s method

Learning goals
Quadratic interpolation

Brent’s procedure

QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select xnew differently: xnew as
minimum of a parabola fitted through

(x left, f left), (xbest, f best), (x right, f right).

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /

not switch with xbest. Right: New interval.

© Optimization in Machine Learning – 1 / 4

QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select xnew differently: xnew as
minimum of a parabola fitted through

(x left, f left), (xbest, f best), (x right, f right).

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /

not switch with xbest. Right: New interval.

© Optimization in Machine Learning – 1 / 4

QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select xnew differently: xnew as
minimum of a parabola fitted through

(x left, f left), (xbest, f best), (x right, f right).

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /

not switch with xbest. Right: New interval.

© Optimization in Machine Learning – 1 / 4

QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select xnew differently: xnew as
minimum of a parabola fitted through

(x left, f left), (xbest, f best), (x right, f right).

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /

not switch with xbest. Right: New interval.

© Optimization in Machine Learning – 1 / 4

QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select xnew differently: xnew as
minimum of a parabola fitted through

(x left, f left), (xbest, f best), (x right, f right).

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /

not switch with xbest. Right: New interval.

© Optimization in Machine Learning – 1 / 4

QUADRATIC INTERPOLATION COMMENTS

Quadratic interpolation not robust. The following may happen:

Algorithm suggests the same xnew in each step,
xnew outside of search interval,
Parabola degenerates to line and no real minimum exists

Algorithm must then abort, finding a global minimum is not
guaranteed.

© Optimization in Machine Learning – 2 / 4

BRENT’S METHOD

Brent proposed an algorithm (1973) that alternates between
golden ratio search and quadratic interpolation as follows:

Quadratic interpolation step acceptable if: (i) xnew falls within
[x left, x right] (ii) xnew sufficiently far away from xbest

(Heuristic: Less than half of movement of step before last)

Otherwise: Proposal via golden ratio

Benefit: Fast convergence (quadratic interpolation), unstable steps
(e.g. parabola degenerated) stabilized by golden ratio search

Convergence guaranteed if the function f has a local minimum

Used in R-function optimize()

© Optimization in Machine Learning – 3 / 4

EXAMPLE: MLE POISSON

Poisson density: f (k | λ) := P(x = k) = λk ·exp(−λ)
k!

Negative log-likelihood for n observations:

−ℓ(λ,D) = − log
n∏

i=1

f
(

x(i) | λ
)
= −

n∑

i=1

log f
(

x(i) | λ
)

0.8 0.9 1.0 1.1 1.2
λ

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Method

Brent

GoldenRatio

GR and Brent converge to minimum at x∗ ≈ 1.
But: GR needs ≈ 45 it., Brent only needs ≈ 15 it. for same tolerance.

© Optimization in Machine Learning – 4 / 4

Why Stopping Criteria?

Challenge: Optimization algorithms are iterative and theoretically
converge to the optimum as iterations →∞.

In Practice:

▶ We cannot run algorithms forever

▶ Need to decide when to stop

▶ Balance between accuracy and computational cost

▶ Different criteria for different problems

Goal: Find a ”good enough” solution in reasonable time.

Types of Stopping Criteria
1. Absolute Function Value Change

|f (x (k+1))− f (x (k))| < εf

2. Relative Function Value Change

|f (x (k+1))− f (x (k))|
|f (x (k))|+ δ

< εf

3. Absolute Parameter Change

|x (k+1) − x (k)| < εx

4. Gradient Norm (if available)

∥f ′(x (k))∥ < εg

5. Maximum Iterations

k > kmax

where k is the iteration number and ε values are tolerance thresholds

Absolute vs Relative Criteria

Absolute Criteria:

|f (x (k+1))− f (x (k))| < ε

Pros:

▶ Simple to implement

▶ Direct interpretation

Cons:

▶ Scale-dependent

▶ Same ε may be too tight for
small values, too loose for
large values

Relative Criteria:

|f (x (k+1))− f (x (k))|
|f (x (k))|+ δ

< ε

Pros:

▶ Scale-invariant

▶ Works across different
magnitudes

Cons:

▶ Slightly more complex

▶ Need to handle f (x) ≈ 0

▶ (δ is a small constant)

Gradient-Based Stopping Criteria
For differentiable functions, we can use gradient information:

First-Order Optimality Condition:

∥f ′(x (k))∥ < εg

At a local optimum: f ′(x∗) = 0

Advantages:

▶ Directly related to optimality conditions

▶ Works well near the optimum

▶ Independent of function scale (if normalized)

Disadvantages:

▶ Requires gradient computation

▶ May be slow near saddle points

▶ Can give false positives at local optima

Practical Considerations

Common Practice: Use multiple criteria simultaneously

STOP if





|f (x (k+1))− f (x (k))| < εf AND

|x (k+1) − x (k)| < εx OR

k > kmax

Typical Values:

▶ εf = 10−6 to 10−8 (function tolerance)

▶ εx = 10−6 to 10−8 (parameter tolerance)

▶ εg = 10−5 to 10−7 (gradient tolerance)

▶ kmax = 100 to 10000 (depends on problem)

Note: Values depend heavily on problem scale and required
precision!

	Convexity
	Unimodal Functions
	Univariate Optimization
	Stopping Criteria

