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Content Overview

» Convex Sets / Convex Functions
» Unimodal Functions

» Univariate Optimization Methods (Golden Section Search,
Brent's Method)

» Stopping Criteria



Optimization in Machine Learning

Mathematical Concepts:
Convexity

Learning goals
@ Convex sets

@ Convex functions



CONVEX SETS

A set of S C RY is convex, if for all x,y € S and all t € [0, 1] the
following holds:

x+ty—x)eS

Intuitively: Connecting line between any x, y € S lies completely in S.

Left: convex set. Right: not convex. (Source: Wikipedia)
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CONVEX FUNCTIONS
Letf: S — R, S convex. fis convex if for all x,y € Sand all t € [0, 1]
f(x + t(y — x)) < £(x) + t(f(y) — f(x)).

Intuitively: Connecting line lies above function.

e oty -x)
Left: Strictly convex function. Right: Convex, but not strictly.

Strictly convex if “<” instead of “<”. Concave (strictly) if the inequality
holds with “>” (“>"), respectively.

Note: f (strictly) concave < —f (strictly) convex.
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EXAMPLES

Convex function: f(x) = |x|

Proof:
fx+ty—x)=Ix+tly—x)|=[1-t)x+t-y|

<[ =Oxl+1t-yl = = )x[ +tly|
= X+t (vl = Ix]) = f(x) + t- (F(y) = 1(x))

Concave function: f(x) = log(x)

Neither nor: f(x) = exp(—x?) (but log-concave)
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OPERATIONS PRESERVING CONVEXITY

@ Nonnegatively weighted summation: Weights wy, ..., w, > 0,
convex functions fi, ..., fy: wify + - - - + wpf, also convex
In particular: Sum of convex functions also convex

@ Composition: g convex, f linear: h = g o f also convex

Proof:
h(x + t(y — x)) = g(f(x + t(y — x)))
= g(f(x) + t(f(y) — 1(x)))
< 9(f(x)) + t(9(f(y)) — 9(f(x)))
= h(x) + t(h(y) — h(x))
@ Elementwise maximization: fi, ..., f, convex functions:
g(x) = max{fi(x),..., f(x)} also convex
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CONVEX FUNCTIONS IN OPTIMIZATION

@ For a convex function, every local optimum is also a global one
= No need for involved global optimizers, local ones are enough

@ A strictly convex function has at most one optimal point
@ Example for strictly convex function without optimum: exp on R

i 2 3 4 1 0 1 2 3 2 1 0 i 2
x x x

Left: Strictly convex; exactly one local minimum, which is also global. Middle: Convex,
but not strictly; all local optima are also global ones but not unique. Right: Not convex.
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Unimodal Functions: Definition

Definition

A function f : R — R is called unimodal if it has exactly one local
optimum (minimum or maximum), which is also the global
optimum.

Formal Definition:
» For a unimodal function with minimum at x*:
» f is strictly decreasing on (—oo, x*]
> f is strictly increasing on [x*, c0)
» For a unimodal function with maximum at x*:
> f is strictly increasing on (—o0, x*]
» f is strictly decreasing on [x*, c0)



Unimodal Functions: Key Properties

Important Properties:
» Any local optimum is also the global optimum

» Optimization is easier: no risk of getting stuck in local optima



Example 1: Quadratic Function (Convex & Unimodal)

f(x) = x2

Properties:
» Convex
» Unimodal
» Global minimum at x* =0
» Strictly decreasing on
(_OO’ 0]
» Strictly increasing on [0, 00)




Example 2: Absolute Value

F(x) = —Ix]

Properties:
» NOT convex (concave)
» Unimodal
» Global maximum at x* =0
» Strictly increasing on
(—OO, 0]
» Strictly decreasing on [0, 00)




Counter-Example: Non-Unimodal Function

f(x) = x> —3x

max | (%)

Properties: |
» NOT unimodal
» Has two local optima: ; | | Jl

» Local max at x = —1 — -1 1 2
» |localminatx=1

» Neither is global _2 | _
» More challenging to min
optimize




Univariate Optimization: Overview

Definition: Univariate optimization involves finding the minimum
or maximum of a function ¥ : R — R.

Assumptions: For algorithms discussed here, we assume that f is
unimodal.

Common Methods:

» Golden Section Search
» Brent's Method

Golden section -
https://sketchplanations.com/the-golden-ratio
Scipy optimize - https:
//docs.scipy.org/doc/scipy/reference/optimize.html


https://sketchplanations.com/the-golden-ratio
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
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Univariate optimization
Golden ratio

Learning goals
v @ Simple nesting procedure
@ Golden ratio




UNIVARIATE OPTIMIZATION
Letf: R — R.

Goal: Iteratively improve eval points. Assume function is unimodal. Will
not rely on gradients, so this also works for black-box problems.

A
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SIMPLE NESTING PROCEDURE
Letf: R — R.

Always maintain three points: left, right, and current best

A

\

Best




SIMPLE NESTING PROCEDURE
Letf: R — R.

Propose random point in interval.

New proposal

A

=
@
—

NB: Later we will define the optimal choice for a new proposal.
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SIMPLE NESTING PROCEDURE
Letf: R — R.

Compare proposal against current best.

New better than
current best?

A




SIMPLE NESTING PROCEDURE
Letf: R — R.

If it is better: proposal becomes current best.

New better than
current best?

Yes!

A

Left
New Best
Old Best

Right

Y



SIMPLE NESTING PROCEDURE
Letf: R — R.

New search interval: around current best.

New search
interval
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SIMPLE NESTING PROCEDURE
Letf: R — R.

Propose a random point.

A

New proposal

Y



SIMPLE NESTING PROCEDURE
Letf: R — R.

Compare proposal against current best.

New better than
current best?

A




SIMPLE NESTING PROCEDURE
Letf: R — R.

If it is better: proposal becomes current best.

New better than
current best?

No...
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SIMPLE NESTING PROCEDURE
Letf: R — R.

New search interval: around current best.

New search
interval
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SIMPLE NESTING PROCEDURE
Letf: R — R.

Propose a random point.

New proposal

A

Y



SIMPLE NESTING PROCEDURE
Letf: R — R.

Compare proposal against current best.

New better than
current best?

A




SIMPLE NESTING PROCEDURE

Letf: R — R.

If it is better: proposal becomes current best.

New better than
current best?

Yes!!!
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SIMPLE NESTING PROCEDURE
Letf: R — R.

New search interval: around current best.

New search
interval
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SIMPLE NESTING PROCEDURE

e Initialization: Search interval (x'® x"9nt) | xleft < yright
@ Choose x°°st randomly.
@ Fort=0,1,2,...
e Choose x™" randomly in [x'®ft, x"ght]
o If f(x"®W) < f(xPest):
o xbDest . ynew
o New interval: Points around xPet
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GOLDEN RATIO

Key question: How can x"" be chosen better than randomly?
@ Insight 1: Always in bigger subinterval to maximize reduction.
@ Insight 2: x"®" symmetrically to x?s for uniform reduction.
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Consider two hypothetical outcomes x"*": frey 2 and frew p-



GOLDEN RATIO /2

If frew,a is the outcome, xpest Stays best and we search around Xpes; :

[X/efta Xnew]
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GOLDEN RATIO /3

If frew,p iS Outcome, xpen, becomes best point and search around Xpey :

[XbeSf) Xr/gh[]
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GOLDEN RATIO /4

For uniform reduction, require the two potential intervals equal sized:

b:= Xright — Xbest = Xnew — Xleft
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GOLDEN RATIO /5

One iteration ahead: require again the intervals to be of same size.

C = Xpest — Xleft = Xright — Xnew
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GOLDEN RATIO /6

To summarize, we require:

Xr/ght _ Xleft’

Xright — Xbest = Xnew — Xleft

Xbest — Xleft = Xright — Xnew
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GOLDEN RATIO /7

@ We require the same percentage improvement in each iteration
@ For ¢ reduction factor of interval sizes (ato b, and b to ¢)

b ¢
=27 b
b ¢ ¢
2—_._:_
YT a'b
@ Dividea=b+cby a:
a b ¢
- = —4 -
a a a
1 = o+¢°
0 = @’ +o—1

@ Unique positive solution is ¢ = @ ~ 0.618.



GOLDEN RATIO /s

@ With x"®" we always go ¢ percentage points into the interval.
@ Given x®" and x"9" it follows

Xbest — Xrlght _ (p(X X

X/eft + (1 _ S0)()(right _ X/eft)

right left)

and due to symmetry

xnew  — X/eft + gO(Xright . X/eft)
Xright . (1 . <P) (Xright . X/eﬂ).



GOLDEN RATIO /9

Termination criterion:

@ A reasonable choice is the absolute error, i.e. the width of the last

interval:

|Xbest . Xnew’ < T

@ In practice, more complicated termination criteria are usually
applied, for example in Numerical Recipes in C, 2017

|Xright _ Xleft| < 7_(|Xbest| + |XneW|)

is proposed as a termination criterion.



Optimization in Machine Learning

Univariate optimization
Brent’s method

Learning goals
@ Quadratic interpolation
@ Brent’s procedure




QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select x"V differently: x"*" as
minimum of a parabola fitted through
( Xleft fleft) ( Xbest fbest) ( Xright fright).

Define Xy, Via parabola Switch Xpey and Xpest Xnew 1S the new right boundary

A\

\

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /
not switch with x*'. Right: New interval.



QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select x"¢¥ differently: x"" as
minimum of a parabola fitted through

(Xleft’ fleft)’ (Xbest, fbest), (Xright7 fright).

Define X,y Via parabola Switch Xpew and Xpest Xnew 1S the new left boundary

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /
not switch with x**'. Right: New interval.



QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select x"¢¥ differently: x"" as
minimum of a parabola fitted through

(Xleft’ fleft)’ (Xbest, fbest), (Xright7 fright).

Define Xpe, Via parabola SWitch Xpew aNd Xpest Xnew i the new left boundary
01 01 0
|
14 ) 11 11
/!
- | AN -
\ ,'
21 N / 21 24
4 T
1 2 3 4 1 2 3 4 2 3 4

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /
not switch with x**'. Right: New interval.



QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select x"¢¥ differently: x"" as
minimum of a parabola fitted through

(Xleft’ fleft)’ (Xbest, fbest), (Xright7 fright).

Define X, via parabola Switch Xpew and Xpest Xnew IS the new left boundary

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /
not switch with x°*!. Right: New interval.



QUADRATIC INTERPOLATION

Similar to golden ratio procedure but select x"¢¥ differently: x"" as
minimum of a parabola fitted through

(Xleft’ fleft)’ (Xbest, fbest), (Xright7 fright).

Define Xqey Via parabola SWitch Xpew and Xpest Xnew IS the new left boundary
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Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch /
not switch with x*'. Right: New interval.



QUADRATIC INTERPOLATION COMMENTS

@ Quadratic interpolation not robust. The following may happen:
e Algorithm suggests the same x"" in each step,
e X" outside of search interval,
e Parabola degenerates to line and no real minimum exists
@ Algorithm must then abort, finding a global minimum is not
guaranteed.



BRENT’S METHOD

@ Brent proposed an algorithm (1973) that alternates between
golden ratio search and quadratic interpolation as follows:

e Quadratic interpolation step acceptable if: (i) x"" falls within
[x'®® x9N (ii) x"eW sufficiently far away from xPest
(Heuristic: Less than half of movement of step before last)
e Otherwise: Proposal via golden ratio
@ Benefit: Fast convergence (quadratic interpolation), unstable steps
(e.g. parabola degenerated) stabilized by golden ratio search
@ Convergence guaranteed if the function f has a local minimum

@ Used in R-function optimize ()



EXAMPLE: MLE POISSON

@ Poisson density: f(k | ) := P(x = k) = ’\exk—p,(A)
@ Negative log-likelihood for n observations:

n
(i (i
¢\ D) = |ong(x' |>\> ;Iogf<x’ |)\>

il Method
i Brent
GoldenRatio
0.8 0.9 1.0 1.1 1.2

GR and Brent converge to minimum at x* ~ 1.
But: GR needs ~ 45 it., Brent only needs ~ 15 it. for same tolerance.

Negative log-likelihood




Why Stopping Criteria?

Challenge: Optimization algorithms are iterative and theoretically
converge to the optimum as iterations — co.

In Practice:
» We cannot run algorithms forever
> Need to decide when to stop
» Balance between accuracy and computational cost

» Different criteria for different problems

Goal: Find a "good enough” solution in reasonable time.



Types of Stopping Criteria
1. Absolute Function Value Change

|F(xKFD) — (x| < &f

N

. Relative Function Value Change

|F (KDY — £(x(K))|
[f(x(K)] + 6

. Absolute Parameter Change

< &f

w

Ix(kH1) — (K] < ¢
4. Gradient Norm (if available)
I (M < &g
5. Maximum lterations

k > kmax

where k is the iteration number and ¢ values are tolerance thresholds



Absolute vs Relative Criteria

Absolute Criteria:

|F (x5 — F(x0))| < ¢

Pros:
» Simple to implement
» Direct interpretation
Cons:
» Scale-dependent

» Same ¢ may be too tight for
small values, too loose for
large values

Relative Criteria:

|F (K1) — £(x(K))|
[F(xCN)| + 6

<e€

Pros:
» Scale-invariant

» Works across different
magnitudes

Cons:
» Slightly more complex
» Need to handle f(x) ~ 0

» (4 is a small constant)



Gradient-Based Stopping Criteria

For differentiable functions, we can use gradient information:

First-Order Optimality Condition:
IF' (M| < &g
At a local optimum: f/(x*) =0

Advantages:
» Directly related to optimality conditions
» Works well near the optimum

» Independent of function scale (if normalized)

Disadvantages:
» Requires gradient computation
» May be slow near saddle points

» Can give false positives at local optima



Practical Considerations

Common Practice: Use multiple criteria simultaneously

1F(xk+1)) — F(x(9))] < e  AND
STOP if { [x(k+1) — x(K)| < ¢, OR
k > kmax

Typical Values:
» ¢ = 107° to 108 (function tolerance)
» ¢, = 107% to 1078 (parameter tolerance)
» c, =107° to 107 (gradient tolerance)
» kmax = 100 to 10000 (depends on problem)

Note: Values depend heavily on problem scale and required
precision!
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