
Geometry of Vectors, Matrices

Hayk Aprikyan, Hayk Tarkhanyan

Aprikyan, Tarkhanyan Lecture 2 1 / 36



Norm

What if we want to measure the length of some vector?

What we can say, is that

the length of the vector

=

the distance between O and A.
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Norm

But how to measure distance?

For a bishop, the distance to its
upper-right neighbor is 1.

While for a rook, it is 2.

So there are different ways to measure distance and length.
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Norm

For a vector v =


v1
v2
. . .
vn

 in Rn, its Euclidean norm or L2 norm is:

∥v∥2 =
√
v21 + v22 + · · ·+ v2n

or, equivalently,
∥v∥2 =

√
v · v

Example

Let v =

[
3
4

]
. The Euclidean norm of v is:

∥v∥2 =
√

32 + 42 = 5

Euclidean norm is the standard length we use in classic geometry.
Sometimes we omit the little ”2” and just write ∥v∥ instead of ∥v∥2.
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Norm

For a vector v =


v1
v2
. . .
vn

 in Rn, its Manhattan norm or L1 norm is:

∥v∥1 = |v1|+ |v2|+ · · ·+ |vn|

Example

Let v =

[
3
4

]
. The Manhattan norm of v is:

∥v∥1 = |3|+ |4| = 7
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Norm

As we have seen, there are different types of norms (=many different ways
to calculate the length of a vector), and one of them is chosen depending
on the problem.

Notice, however, that independently of which one we take, all norms
always satisfy the following three properties:

1 ∥v∥ ≥ 0, and equals 0 if only if v = 0,

2 ∥cv∥ = |c | · ∥v∥,
3 ∥v + u∥ ≤ ∥v∥+ ∥u∥.

v

u

v

u
v + u
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Norm
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Angle between vectors

Geometrically, a vector is an arrow in space, that is, it has both a length
and direction.

How do we describe a direction in mathematics? By angles!

u

v

Remember the formula from high school geometry:
a · b = ∥a∥∥b∥ cosα, where α is the angle between a and b.
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Angle between vectors

Definition

The angle θ between two vectors u and v is the angle 0 ≤ θ ≤ π for which:

cos θ =
u · v

∥u∥ · ∥v∥

Example

Let u =

[
3
4

]
and v =

[
7
1

]
. Find the angle θ between u and v.

cos θ =
u · v

∥u∥ · ∥v∥
=

(3 · 7) + (4 · 1)√
32 + 42 ·

√
72 + 12

=
25√

25 ·
√
50

=
1√
2

1√
2
= cos

π

4
⇒ θ = arccos

1√
2
=

π

4
= 45◦
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Angle between vectors

Corollary 1

For any vectors u, v ∈ Rn,

v · u = ∥v∥ · ∥u∥ · cos θ,

where θ is the angle between v and u.

Corollary 2

The dot product of two vectors equals 0 if and only if they are
perpendicular to each other (form a 90◦ angle).

Corollary 3

Any vector v ∈ Rn forms an angle of 0◦ with itself and 180◦ with its
negative.
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Vector Space

Finally, we are left to notice two things. Take, for example,

the set D = {0, 1, 2, . . . , 9} of digits, and

the set P = {x ∈ R : x > 0} of positive numbers.

Notice that,

while the sum of two digits may not be a digit (e.g. 5 + 7 = 12), the
sum of two vectors is always a vector,

and

while the product of a positive number with an arbitrary scalar c may
not be positive (e.g. 4 · (−1) = −4), the product of a vector with a
scalar is always a vector.

In this case we say that the set of vectors is closed under addition and
scalar multiplication, while D or P are not (P is closed under addition
only).
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Vector Space

Furthermore, take the line y = 2x and choose any vector on it:
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Vector Space

After multiplying it with any number c , it will still stay on the line y = 2x :
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Vector Space

Similarly, if we add two vectors v1 and v2 which both lie on the line
y = 2x , their sum would again be on the same line.

In other words, the line y = 2x is closed under addition and scalar
multiplication, just like the whole set of vectors R2. This motivates us to
give a special name to the good sets like the line y = 2x and R2.

We say that R2 is a vector space, and the set of vectors lying on the line
y = 2x are a vector subspace of R2.
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Vector Space

Definition

A set V is called a vector space if

1 it is closed under addition and scalar multiplication,

2 (u+ v) +w = u+ (v +w)

3 u+ v = v + u

4 There exists a vector 0 such that v + 0 = v for all v ∈ V

5 For every v ∈ V , there exists a vector −v such that v + (−v) = 0

6 (cd) · v = c · (d · v)
7 1 · v = v

8 c · (u+ v) = c · u+ c · v
9 (c + d) · v = c · v + d · v

No need to memorize the properties–just the natural laws of addition and
scalar multiplication.
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Vector Space

Definition

A subset U of a vector space V is called a subspace of V if U itself is a
vector space.

How to check if a subset U of V is a subspace? Just make sure that it is
closed under addition and scalar multiplication!

Theorem

Assume V is a vector space, and U is a subset of V . Then U is a
subspace of V if and only if

1. x+ y ∈ U, for all x, y ∈ U,

2. cx ∈ U, for all x ∈ U and c ∈ R.

So R1, R2, R3, . . . are all vector spaces.

The set of all vectors that lie on the same line (e.g. y = kx) form a
subspace (on the condition that the line also contains the 0 vector).
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Matrices

Definition

An m × n tuple A of elements aij (i = 1, . . . ,m and j = 1, . . . , n), is called
a real-valued (m, n) matrix:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , aij ∈ R.

The set of all real-valued (m, n) matrices is denoted by Rm×n.

Example

A =

[
1 2 3
4 5 6

]
∈ R2×3 B =

[
−2 0
1 3

]
∈ R2×2

Note that the first number in (m, n) always shows rows, second: columns.
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Matrix Addition

The vectors are practically 1-column matrices: Rn = Rn×1. Similar to
vectors, we define the following operations with the matrices:

Definition

The sum of two matrices A and B, denoted as A+ B, is obtained by
adding corresponding elements. If A is of size m × n and B is of the same
size, then A+ B is also of size m × n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



A+ B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

. . . . . . . . . . . .
am1 + bm1 am2 + bm2 . . . amn + bmn


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Matrix Addition

Example

A =

[
1 2
3 4

]
B =

[
−2 0
1 3

]
A+ B =

[
−1 2
4 7

]

Remark

Matrix addition is only defined for matrices of the same size.
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Scalar Multiplication of a Matrix

Definition

The product of a scalar c and a matrix A, denoted as cA, is obtained by
multiplying each element of the matrix by the scalar.

c · A = c ·


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



=


c · a11 c · a12 . . . c · a1n
c · a21 c · a22 . . . c · a2n

...
...

. . .
...

c · am1 c · am2 . . . c · amn



Scalar multiplication can be performed for any scalar c and any matrix A.
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Negative of a Matrix

Definition

The negative of a matrix A, denoted as −A, is obtained by changing the
sign of each element in the matrix.

−A = −


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn



=


−a11 −a12 . . . −a1n
−a21 −a22 . . . −a2n
. . . . . . . . . . . .

−am1 −am2 . . . −amn



Remark

The negative of a matrix equals (−1) times the matrix.
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Matrix Subtraction

Definition

The difference of two matrices A and B, denoted as A− B, is obtained by
subtracting corresponding elements, or by adding A and −B. If A and B
are both of size m × n, then A− B is also of size m × n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
. . . . . . . . . . . .
bm1 bm2 . . . bmn



A− B =


a11 − b11 a12 − b12 . . . a1n − b1n
a21 − b21 a22 − b22 . . . a2n − b2n

. . . . . . . . . . . .
am1 − bm1 am2 − bm2 . . . amn − bmn



Matrix subtraction is only defined for matrices of the same size.
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Matrix Subtraction

Definition
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Zero Matrix

Definition

The zero matrix, denoted as O or Om×n, is a matrix where all elements
are zero.

Example

O2×3 =

[
0 0 0
0 0 0

]
O3×2 =

0 0
0 0
0 0


Remark

A+ O = O + A = A for any matrix A.
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Transpose of a Matrix

Definition

The transpose of a matrix A, denoted as AT , is obtained by swapping its
rows and columns.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 AT =


a11 a21 . . . an1
a12 a22 . . . an2
. . . . . . . . . . . .
a1m a2m . . . anm



Example

A =

[
7 4 2
0 1 −3

]
AT =

7 0
4 1
2 −3


Remark

The transpose of an (m, n) matrix is an (n,m) matrix.
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Matrices

Matrices can be added together and multiplied by numbers, and these
operations share the same ”good” properties (e.g. A+ B = B + A) with
vectors.

In that sense, it is not difficult to prove that:

Theorem

For each m, n ∈ N the set of real-valued matrices Rm×n forms a vector
space.
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Matrix-Vector Multiplication

Definition

Let A be an m × n matrix and v be a column vector of size n × 1. The
product Av is a column vector of size m × 1 obtained by multiplying each
row of A by the corresponding element of v and summing the results.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 v =


v1
v2
...
vn



Av =


a11v1 + a12v2 + . . .+ a1nvn
a21v1 + a22v2 + . . .+ a2nvn

...
am1v1 + am2v2 + . . .+ amnvn


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Matrix-Vector Multiplication

Or, in other words, if we denote the rows of A by A1,A2, . . . ,Am, the
product Av will be a column vector of size m × 1 obtained by taking the
dot product of each row of A with the vector v:

A =


. . . A1 . . .
. . . A2 . . .

...
. . . Am . . .

 v =


v1
v2
...
vn



Av =


a11v1 + a12v2 + . . .+ a1nvn
a21v1 + a22v2 + . . .+ a2nvn

...
am1v1 + am2v2 + . . .+ amnvn

 =


A1 · v
A2 · v

...
Am · v



Aprikyan, Tarkhanyan Lecture 2 27 / 36



Matrix-Vector Multiplication
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Matrix-Vector Multiplication

Example

A =

[
1 2 3
4 5 6

]
v =

 2
−1
3


Av =

[
1 · 2 + 2 · (−1) + 3 · 3
4 · 2 + 5 · (−1) + 6 · 3

]
=

[
9
21

]

Example

A =

−2 1
0 3
1 −1

 v =

[
4
2

]

Av =

(−2) · 4 + 1 · 2
0 · 4 + 3 · 2

1 · 4 + (−1) · 2

 =

−6
6
2


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Matrix-Vector Multiplication

Matrix-vector multiplication shares properties with scalar multiplication
and addition of vectors.

Distributive Property:
For a matrix A and vectors v and w of appropriate sizes:

A(v +w) = Av + Aw

Scalar Multiplication:
For a matrix A and a scalar c :

A(cv) = c(Av)

Note that we can only multiply a matrix by a vector if the number of
columns of the matrix equals the length of the vector.
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Geometric Interpretation

Why do we define the matrix-vector multiplication this way? Turns out, it
has a beautiful geometrical interpretation.

Think this way: when you multiply, say, a 2× 2 matrix A by a vector
v ∈ R2, what you get is another vector u = Av ∈ R2. We call this u the
transformed version of v (and we say that A is a linear transformation).
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Geometric Interpretation

As we will see later, the resulting ”transformed version” u is just the same
old v except it is rotated and scaled to become longer or shorter (and
possibly, flipped).

In this sense, all matrices are either just rotating vectors by some degree,
or flipping them horizontally/vertically, or scale them, or do all three.

The key thing is: whatever a matrix ”does” to one vector, it does the
same to all other vectors too (when being multiplied with them).

Check different matrices yourself:
- visualize-it.github.io/linear_transformations/simulation.html

- www.shad.io/MatVis

We will learn more about this later–now back to matrices∼
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Matrix Multiplication

Definition

Let A be an m × n matrix, and let B be an n × k matrix. The product
C = AB is an m × k matrix, where each element cij is obtained by taking
the dot product of the i-th row of A and the j-th column of B:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 B =


b11 b12 . . . b1k
b21 b22 . . . b2k
. . . . . . . . . . . .
bn1 bn2 . . . bnk



C = AB =


c11 c12 . . . c1k
c21 c22 . . . c2k
. . . . . . . . . . . .
cm1 cm2 . . . cmk


where cij = ai1b1j + ai2b2j + . . .+ ainbnj =

n∑
p=1

aipbpj
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Matrix Multiplication
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Matrix Multiplication

Matrix multiplication shares properties with scalar multiplication and
addition of vectors, as well as matrix-vector multiplication.

Distributive Property:
For matrices A, B, and C of appropriate sizes:

A(B + C ) = AB + AC and (A+ B)C = AC + BC

Associativity Property:
For matrices A, B, and C of appropriate sizes:

A(BC ) = (AB)C

Scalar Multiplication:
For matrices A, B of appropriate sizes and a scalar c:

A(cB) = c(AB) = (cA)B

Note that we can only multiply two matrices if the number of columns of
the first matrix equals the number of rows of the second matrix: (m × n)
with (n × k).
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Matrix Multiplication

Example

Let

C =

−1 0
2 −3
4 1

 ∈ R3×2 D =

[
5 −2 1
3 0 7

]
∈ R2×3

CD =

 −1 · 5 + 0 · 3 −1 · (−2) + 0 · 0 −1 · 1 + 0 · 7
2 · 5 + (−3) · 3 2 · (−2) + (−3) · 0 2 · 1 + (−3) · 7
4 · 5 + 1 · 3 4 · (−2) + 1 · 0 4 · 1 + 1 · 7


=

−5 2 −1
1 −4 −19
23 −8 11

 ∈ R3×3
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