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Angle between vectors

Geometrically, a vector is an arrow in space, that is, it has both a length
and direction.

How do we describe a direction in mathematics? By angles!

u

v

Remember the formula from high school geometry:
a · b = ∥a∥∥b∥ cosα, where α is the angle between a and b.
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Angle between vectors

Definition

The angle θ between two vectors u and v is the angle 0 ≤ θ ≤ π for which:

cos θ =
u · v

∥u∥ · ∥v∥

Example

Let u =

[
3
4

]
and v =

[
7
1

]
. Find the angle θ between u and v.

cos θ =
u · v

∥u∥ · ∥v∥
=

(3 · 7) + (4 · 1)√
32 + 42 ·

√
72 + 12

=
25√

25 ·
√
50

=
1√
2

1√
2
= cos

π

4
⇒ θ = arccos

1√
2
=

π

4
= 45◦
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Angle between vectors

Corollary

For any vectors u, v ∈ Rn,

v · u = ∥v∥ · ∥u∥ · cos θ,

where θ is the angle between v and u.

In particular, this also means that:

|v · u| ≤ ∥v∥ · ∥u∥

i.e. for any numbers a1, a2, . . . , an and b1, b2, . . . , bn we have

|a1b1 + a2b2 + · · ·+ anbn| ≤
√
a21 + a22 + · · ·+ a2n ·

√
b21 + b22 + · · ·+ b2n

a fact known as the Cauchy-Schwarz inequality.
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:

Two vectors form an angle of 0◦ if they point in the same direction,

Two vectors form an angle of 180◦ if they point in the opposite
directions,

and most importantly:

Two vectors are perpendicular (or orthogonal) to each other (i.e.
form a 90◦ angle), if and only if their dot product equals 0.

This is important because being orthogonal is the mathematical way of
saying ”pointing in completely different directions”.
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Cosine similarity (optional)

Suppose that we somehow represent a couple of words as vectors in R3.

Which vectors are more similar, drone and jet, or drone and rocket?
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Cosine similarity (optional)

A useful way to measure how similar two vectors are, is to measure the
cosine of the angle between them:

cos θ (where θ is the angle between u and v)

While the L1 or L2 distances between two vectors measure how far or how
close their endpoints are, the cosine similarity measures how aligned they
are – independently of their lengths.

In the example of drone, jet, and rocket, the cosine between drone and
jet is ≈ 0.95, while the cosine between drone and rocket is ≈ 0.7.

(check some actual word embeddings here)
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https://projector.tensorflow.org/


Cosine similarity (optional)

A useful way to measure how similar two vectors are, is to measure the
cosine of the angle between them:

cos θ (where θ is the angle between u and v)

While the L1 or L2 distances between two vectors measure how far or how
close their endpoints are, the cosine similarity measures how aligned they
are – independently of their lengths.

In the example of drone, jet, and rocket, the cosine between drone and
jet is ≈ 0.95, while the cosine between drone and rocket is ≈ 0.7.

(check some actual word embeddings here)

Aprikyan, Tarkhanyan Lecture 2 7 / 33

https://projector.tensorflow.org/


Cosine similarity (optional)

A useful way to measure how similar two vectors are, is to measure the
cosine of the angle between them:

cos θ (where θ is the angle between u and v)

While the L1 or L2 distances between two vectors measure how far or how
close their endpoints are, the cosine similarity measures how aligned they
are – independently of their lengths.

In the example of drone, jet, and rocket, the cosine between drone and
jet is ≈ 0.95, while the cosine between drone and rocket is ≈ 0.7.

(check some actual word embeddings here)

Aprikyan, Tarkhanyan Lecture 2 7 / 33

https://projector.tensorflow.org/


Vector Space

Finally, we are left to notice two things. Take, for example,

the set D = {0, 1, 2, . . . , 9} of digits, and

the set P = {x ∈ R : x > 0} of positive numbers.

Notice that,

while the sum of two digits may not be a digit (e.g. 5 + 7 = 12), the
sum of two vectors is always a vector,

and

while the product of a positive number with an arbitrary scalar c may
not be positive (e.g. 4 · (−1) = −4), the product of a vector with a
scalar is always a vector.

In this case we say that the set of vectors is closed under addition and
scalar multiplication, while D or P are not (P is closed under addition
only).
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Vector Space

Furthermore, take the line y = 2x and choose any vector on it:
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Vector Space

After multiplying it with any number c , it will still stay on the line y = 2x :
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Vector Space

Similarly, if we add two vectors v1 and v2 which both lie on the line
y = 2x , their sum would again be on the same line.

In other words, the line y = 2x is closed under addition and scalar
multiplication, just like the whole set of vectors R2. This motivates us to
give a special name to the good sets like the line y = 2x and R2.

We say that R2 is a vector space, and the set of vectors lying on the line
y = 2x are a vector subspace of R2.
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Vector Space

Definition

If V is a set such that:

1 it is closed under addition and scalar multiplication,

2 (u+ v) +w = u+ (v +w)

3 u+ v = v + u

4 There exists a vector 0 such that v + 0 = v for all v ∈ V

5 For every v ∈ V , there exists a vector −v such that v + (−v) = 0

6 (cd) · v = c · (d · v)
7 1 · v = v

8 c · (u+ v) = c · u+ c · v
9 (c + d) · v = c · v + d · v
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Vector Space

Definition

If V is a set such that:
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then it is called a vector space (or a linear space).
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Vector Space

Definition

If V is a set such that:

1 it is closed under addition and scalar multiplication,

2 (u+ v) +w = u+ (v +w)

3 u+ v = v + u

4 There exists a vector 0 such that v + 0 = v for all v ∈ V
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7 1 · v = v

8 c · (u+ v) = c · u+ c · v
9 (c + d) · v = c · v + d · v

then it is called a vector space (or a linear space).

No need to memorize–just the natural laws of addition and multiplication.
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Vector Space

Definition

A subset U of a vector space V is called a subspace of V if U itself is a
vector space.

How to check if a subset U of V is a subspace? Just make sure that it is
closed under addition and scalar multiplication!

Theorem

Assume V is a vector space, and U is a subset of V . Then U is a
subspace of V if and only if

1. x+ y ∈ U, for all x, y ∈ U,

2. cx ∈ U, for all x ∈ U and c ∈ R.

So R1, R2, R3, . . . are all vector spaces.

The set of all vectors that lie on the same line (e.g. y = kx) form a
subspace (on the condition that the line also contains the 0 vector).
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Matrices

Definition

An m × n table A of elements aij is called an (m, n) matrix:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , aij ∈ R

(here i = 1, . . . ,m and j = 1, . . . , n).

The set of all (m, n) matrices is denoted by Rm×n.

Example

A =

[
1 2 3
4 5 6

]
∈ R2×3 B =

[
−2 0
1 3

]
∈ R2×2

Note that the first number in (m, n) always shows rows, second – columns.
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am1 am2 . . . amn

 , aij ∈ R

(here i = 1, . . . ,m and j = 1, . . . , n).

The set of all (m, n) matrices is denoted by Rm×n.

Example

A =

[
1 2 3
4 5 6

]
∈ R2×3 B =

[
−2 0
1 3

]
∈ R2×2

Note that the first number in (m, n) always shows rows, second – columns.
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Matrix Addition

The vectors are practically 1-column matrices: Rn = Rn×1. Similar to
vectors, we define the following operations with the matrices:

Definition

The sum of two matrices A and B, denoted as A+ B, is obtained by
adding corresponding elements. If A is of size m × n and B is of the same
size, then A+ B is also of size m × n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



A+ B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

. . . . . . . . . . . .
am1 + bm1 am2 + bm2 . . . amn + bmn


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Matrix Addition

Example

A =

[
1 2
3 4

]
B =

[
−2 0
1 3

]
A+ B =

[
−1 2
4 7

]

Matrix addition is only defined for matrices of the same size.

Question

What do you think happens if we multiply a matrix by a scalar?
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Scalar Multiplication of a Matrix

Definition

If A is a matrix and c is any scalar, we define the product cA as the matrix:

c · A = c ·


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



=


c · a11 c · a12 . . . c · a1n
c · a21 c · a22 . . . c · a2n

...
...

. . .
...

c · am1 c · am2 . . . c · amn


i.e. each element of the matrix is multiplied by the scalar c.

Scalar multiplication can be performed for any scalar c and any matrix A.
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Negative of a Matrix

Similarly, we define the negative of a matrix to be the matrix with all
elements multiplied by −1:

Definition

The negative of a matrix A, denoted as −A, is obtained by changing the
sign of each element in the matrix.

−A = −


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn



=


−a11 −a12 . . . −a1n
−a21 −a22 . . . −a2n
. . . . . . . . . . . .

−am1 −am2 . . . −amn


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Matrix Subtraction

Definition

The difference of two matrices A and B (both of the same size), denoted
as A− B, is obtained by subtracting corresponding elements:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
. . . . . . . . . . . .
bm1 bm2 . . . bmn



A− B =


a11 − b11 a12 − b12 . . . a1n − b1n
a21 − b21 a22 − b22 . . . a2n − b2n

. . . . . . . . . . . .
am1 − bm1 am2 − bm2 . . . amn − bmn



What happens if we add a matrix to its negative?
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Zero Matrix

Definition

The zero matrix, denoted as O or Om×n, is a matrix where all elements
are zero.

Example

O2×3 =

[
0 0 0
0 0 0

]
O3×2 =

0 0
0 0
0 0



Of course, adding O has no effect on a matrix:

Remark

For any zero matrix O of the same size as matrix A, we have

A+ O = O + A = A
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Transpose of a Matrix

Definition

The transpose of a matrix A, denoted as AT , is obtained by swapping its
rows and columns.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 AT =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn



Example

A =

[
7 4 2
0 1 −3

]
AT =

7 0
4 1
2 −3


If A is an (m, n) matrix, then AT is an (n,m) matrix.
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Matrices

Matrices can be added together and multiplied by numbers, and these
operations share the same ”good” properties (e.g. A+ B = B + A) with
vectors.

In that sense, it is not difficult to prove that:

Theorem

For each fixed (m, n), the set Rm×n of all m × n matrices forms a vector
space.

Okay, but why do we need matrices at all?
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A ∈ Rm×n and a vector v ∈ Rn:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 =


. . . A1 . . .
. . . A2 . . .

...
. . . Am . . .

 v =


v1
v2
...
vn


To multiply A by v, we take each row of A and compute its dot product
with the vector v: 


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
As a result we get a new vector of size m × 1.
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Matrix-Vector Multiplication

Definition

Let A be an m × n matrix and v be a column vector of size n × 1. The
product Av is a column vector of size m × 1 obtained by multiplying each
row of A by the corresponding element of v and summing the results.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 v =


v1
v2
...
vn



Av =


a11v1 + a12v2 + . . .+ a1nvn
a21v1 + a22v2 + . . .+ a2nvn

...
am1v1 + am2v2 + . . .+ amnvn


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Matrix-Vector Multiplication

Aprikyan, Tarkhanyan Lecture 2 25 / 33



Matrix-Vector Multiplication

Example

A =

[
1 2 3
4 5 6

]
v =

 2
−1
3


Av =

[
1 · 2 + 2 · (−1) + 3 · 3
4 · 2 + 5 · (−1) + 6 · 3

]
=

[
9
21

]

Example

A =

−2 1
0 3
1 −1

 v =

[
4
2

]

Av =

(−2) · 4 + 1 · 2
0 · 4 + 3 · 2

1 · 4 + (−1) · 2

 =

−6
6
2


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Matrix-Vector Multiplication

Matrix-vector multiplication shares properties with scalar multiplication
and addition of vectors.

Distributive Property:
For a matrix A and vectors v and w of appropriate sizes:

A(v +w) = Av + Aw

Scalar Multiplication:
For a matrix A and a scalar c :

A(cv) = c(Av)

Note that we can only multiply a matrix by a vector if the number of
columns of the matrix equals the length of the vector
(i.e. not all matrices and vectors can be multiplied)!
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Geometric Interpretation

Why do we define the matrix-vector multiplication this way? Turns out, it
has a beautiful geometrical interpretation.

Think this way: when you multiply, say, a 2× 2 matrix A by a vector
v ∈ R2, what you get is another vector u = Av ∈ R2. We call this u the
transformed version of v (and we say that A is a linear transformation).
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Geometric Interpretation

As we will see later, the resulting ”transformed version” u is just the same
old v except it is rotated and scaled to become longer or shorter (and
possibly, flipped).

In this sense, all matrices are either just rotating vectors by some degree,
or flipping them horizontally/vertically, or scale them, or do all three.

The key thing is: whatever a matrix ”does” to one vector, it does the
same to all other vectors too (when being multiplied with them).

Check different matrices yourself:
- visualize-it.github.io/linear_transformations/simulation.html

- www.shad.io/MatVis

We will learn more about this later–now back to matrices∼
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Matrix Multiplication

Definition

Let A be an m × n matrix, and let B be an n × k matrix. The product
C = AB is an m × k matrix, where each element cij is the dot product of
the i th row of A and the j th column of B:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 B =


b11 b12 . . . b1k
b21 b22 . . . b2k
. . . . . . . . . . . .
bn1 bn2 . . . bnk



C = AB =


c11 c12 . . . c1k
c21 c22 . . . c2k
. . . . . . . . . . . .
cm1 cm2 . . . cmk


where cij = ai1b1j + ai2b2j + . . .+ ainbnj .
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Matrix Multiplication
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Matrix Multiplication

Matrix multiplication shares properties with scalar multiplication and
addition of vectors, as well as matrix-vector multiplication.

Distributive Property:

A(B + C ) = AB + AC and (A+ B)C = AC + BC

Associative Property:

A(BC ) = (AB)C

Scalar Multiplication:

A(cB) = c(AB) = (cA)B

Note that we can only multiply A and B if the (number of columns in A)
equals the (number of rows in B): (m × n) with (n × k).

In particular, this means that matrix multiplication is not commutative,
i.e. in general, AB ̸= BA !
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Matrix Multiplication

Example

Let

C =

−1 0
2 −3
4 1

 ∈ R3×2 D =

[
5 −2 1
3 0 7

]
∈ R2×3

CD =

 −1 · 5 + 0 · 3 −1 · (−2) + 0 · 0 −1 · 1 + 0 · 7
2 · 5 + (−3) · 3 2 · (−2) + (−3) · 0 2 · 1 + (−3) · 7
4 · 5 + 1 · 3 4 · (−2) + 1 · 0 4 · 1 + 1 · 7


=

−5 2 −1
1 −4 −19
23 −8 11

 ∈ R3×3

What about DC?
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