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Angle between vectors

Geometrically, a vector is an arrow in space, that is, it has both a length
and direction.
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Angle between vectors

Geometrically, a vector is an arrow in space, that is, it has both a length
and direction. How do we describe a direction in mathematics? By angles!

Remember the formula from high school geometry:
a-b = |a||||b|| cos cr, where « is the angle between a and b.
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Angle between vectors

Definition

The angle 0 between two vectors u and v is the angle 0 < 6 < 7 for which:

=
[Jull - vl
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Angle between vectors

The angle 0 between two vectors u and v is the angle 0 < 6 < 7 for which:

=
[Jull - vl

Let u = [ﬂ and v = [ﬂ Find the angle 6 between u and v.

s MV _ B-7)+(4-1) 25 _ 1
full - Ivll  V32+42.v72+12 V25-4/50 2
1 T 1 T
— =cos— = 0O =arccos— = — = 45°
V2 4 V2 4
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Angle between vectors

For any vectors u, v € R”,

v-u= v - uf - cos,

where 6 is the angle between v and u.

Aprikyan, Tarkhanyan Lecture 2 4/33



Angle between vectors

For any vectors u, v € R”,

v-u= v - uf - cos,

where 6 is the angle between v and u.

In particular, this also means that:

v ul < v - [lu]
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Angle between vectors

For any vectors u, v € R”,

v-u=|v]-[uf-cosb,

where 6 is the angle between v and u.

In particular, this also means that:
v -ul < v - ull

i.e. for any numbers a1, a»,...,a, and by, by, ..., b, we have

laiby + azxbo + - - - + apby| < \/a§+a§+---+ag-\/bf+b§+---+b,2,
a fact known as the Cauchy-Schwarz inequality.
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:

@ Two vectors form an angle of 0° if they point in the same direction,
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:
@ Two vectors form an angle of 0° if they point in the same direction,

@ Two vectors form an angle of 180° if they point in the opposite
directions,
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:
@ Two vectors form an angle of 0° if they point in the same direction,

@ Two vectors form an angle of 180° if they point in the opposite
directions,

and most importantly:
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:
@ Two vectors form an angle of 0° if they point in the same direction,

@ Two vectors form an angle of 180° if they point in the opposite
directions,

and most importantly:

e Two vectors are perpendicular (or orthogonal) to each other (i.e.
form a 90° angle), if and only if their dot product equals 0.
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Angle between vectors

The way we defined the angle between two vectors, it is clear that:
@ Two vectors form an angle of 0° if they point in the same direction,

@ Two vectors form an angle of 180° if they point in the opposite
directions,

and most importantly:

e Two vectors are perpendicular (or orthogonal) to each other (i.e.
form a 90° angle), if and only if their dot product equals 0.

This is important because being orthogonal is the mathematical way of
saying " pointing in completely different directions”.
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Cosine similarity (optional)

Suppose that we somehow represent a couple of words as vectors in R3.
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Cosine similarity (optional)

Suppose that we somehow represent a couple of words as vectors in R3.

sky
4 helicopter (0,2,4)
3
drone (0,3,3)
2

rocket (0,4,2)

engine
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Cosine similarity (optional)

Suppose that we somehow represent a couple of words as vectors in R3.

sky

wings

helicopter (0,2,4)

drone (0,3,3)

rocket (0,4,2)

engine

Which vectors are more similar, drone and jet, or drone and rocket?

Aprikyan, Tarkhanyan
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Cosine similarity (optional)

A useful way to measure how similar two vectors are, is to measure the
cosine of the angle between them:

cos (where @ is the angle between u and v)
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https://projector.tensorflow.org/

Cosine similarity (optional)

A useful way to measure how similar two vectors are, is to measure the
cosine of the angle between them:

cos (where @ is the angle between u and v)

While the L1 or L2 distances between two vectors measure how far or how
close their endpoints are, the cosine similarity measures how aligned they
are — independently of their lengths.

In the example of drone, jet, and rocket, the cosine between drone and
jet is = 0.95, while the cosine between drone and rocket is ~ 0.7.
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Cosine similarity (optional)

A useful way to measure how similar two vectors are, is to measure the
cosine of the angle between them:

cos (where @ is the angle between u and v)

While the L1 or L2 distances between two vectors measure how far or how
close their endpoints are, the cosine similarity measures how aligned they
are — independently of their lengths.

In the example of drone, jet, and rocket, the cosine between drone and
jet is = 0.95, while the cosine between drone and rocket is ~ 0.7.

(check some actual word embeddings here)
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Finally, we are left to notice two things. Take, for example,
e the set D ={0,1,2,...,9} of digits, and
o the set P = {x € R: x > 0} of positive numbers.
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@ while the sum of two digits may not be a digit (e.g. 5+ 7 = 12), the
sum of two vectors is always a vector,
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o the set P = {x € R: x > 0} of positive numbers.
Notice that,
@ while the sum of two digits may not be a digit (e.g. 5+ 7 = 12), the
sum of two vectors is always a vector,
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@ while the product of a positive number with an arbitrary scalar ¢ may
not be positive (e.g. 4-(—1) = —4), the product of a vector with a
scalar is always a vector.
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Finally, we are left to notice two things. Take, for example,
e the set D ={0,1,2,...,9} of digits, and
o the set P = {x € R: x > 0} of positive numbers.
Notice that,

@ while the sum of two digits may not be a digit (e.g. 5+ 7 = 12), the
sum of two vectors is always a vector,

and

@ while the product of a positive number with an arbitrary scalar ¢ may
not be positive (e.g. 4-(—1) = —4), the product of a vector with a
scalar is always a vector.

In this case we say that the set of vectors is closed under addition and
scalar multiplication, while D or P are not (P is closed under addition

only).
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Vector Space

Furthermore, take the line y = 2x and choose any vector on it:

A

I
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After multiplying it with any number c, it will still stay on the line y = 2x:

A

I

S N
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Similarly, if we add two vectors vi and v» which both lie on the line
y = 2x, their sum would again be on the same line.
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Similarly, if we add two vectors vi and v» which both lie on the line
y = 2x, their sum would again be on the same line.

In other words, the line y = 2x is closed under addition and scalar
multiplication, just like the whole set of vectors R?. This motivates us to
give a special name to the good sets like the line y = 2x and R?.
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Similarly, if we add two vectors vi and v» which both lie on the line
y = 2x, their sum would again be on the same line.

In other words, the line y = 2x is closed under addition and scalar
multiplication, just like the whole set of vectors R?. This motivates us to
give a special name to the good sets like the line y = 2x and R?.

We say that R? is a vector space, and the set of vectors lying on the line
y = 2x are a vector subspace of R?.
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Vector Space

Definition
If V is a set such that:

© it is closed under addition and scalar multiplication,
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Vector Space

Definition

If V is a set such that:
© it is closed under addition and scalar multiplication,
Q@ (utv)+w=u+(v+w)
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Vector Space

Definition
If V is a set such that:

© it is closed under addition and scalar multiplication,
Q@ (utv)+w=u+(v+w)
Qutv=v+u
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Vector Space

Definition
If V is a set such that:

© it is closed under addition and scalar multiplication,

Q@ (utv)+w=u+(v+w)

Qu+tv=v+u

@ There exists a vector 0 such that v+ 0 =v forallve V
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Vector Space

Definition
If V is a set such that:
© it is closed under addition and scalar multiplication,
Q@ (utv)+w=u+(v+w)
Qutv=v+u
@ There exists a vector 0 such that v+ 0 =v forallve V
© For every v € V, there exists a vector —v such that v+ (—v) =0
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Vector Space

Definition
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© it is closed under addition and scalar multiplication,
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© For every v € V, there exists a vector —v such that v+ (—v) =0
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Vector Space

Definition
If V is a set such that:

© it is closed under addition and scalar multiplication,

Q@ (utv)+w=u+(v+w)

Qutv=v+u

@ There exists a vector 0 such that v+ 0 =v forallve V

© For every v € V, there exists a vector —v such that v+ (—v) =0
Q (cd)-v=c-(d-v)

Q1 v=yv
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Vector Space

Definition
If V is a set such that:
© it is closed under addition and scalar multiplication,
Q@ (utv)+w=u+(v+w)
Qutv=v+u
@ There exists a vector 0 such that v+ 0 =v forallve V
© For every v € V, there exists a vector —v such that v+ (—v) =0
Q (cd)-v=c-(d-v)
Q1 v=yv
Qc (u+v)=c-u+c-v
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Vector Space

Definition
If V is a set such that:
© it is closed under addition and scalar multiplication,
Q@ (utv)+w=u+(v+w)
Qutv=v+u
@ There exists a vector 0 such that v+ 0 =v forallve V
© For every v € V, there exists a vector —v such that v+ (—v) =0
Q (cd)-v=c-(d-v)
Q1 v=yv
Qc (u+v)=c-u+c-v
Q (c+d)-v=c-v+d-v
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Vector Space

Definition

If V is a set such that:

it is closed under addition and scalar multiplication,
(u+v)+w=u+(v+w)

utv=v+u

There exists a vector 0 such that v+ 0 =v for allve V
For every v € V/, there exists a vector —v such that v+ (—v) =0
(cd)-v=c-(d-v)

l-v=v

c-(u+v)=c-u+c-v

(c+d)-v=c-v+d-v

then it is called a vector space (or a linear space).

©O00O00O0O0O0CO
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Vector Space

Definition
If V is a set such that:
@ it is closed under addition and scalar multiplication,
(u+v)+w=u+(v+w)
ut+v=v+u
There exists a vector 0 such that v+ 0 =wv for allve V
For every v € V, there exists a vector —v such that v+ (—v) =0
(cd)-v=c-(d-v)
l-v=v
c-(u+v)=c-u+c-v
(c+d)-v=c-v+d-v

then it is called a vector space (or a linear space).

000000600

No need to memorize—just the natural laws of addition and multiplication.
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Definition

A subset U of a vector space V is called a subspace of V if U itself is a
vector space.
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Definition
A subset U of a vector space V is called a subspace of V if U itself is a

vector space.

How to check if a subset U of V' is a subspace? Just make sure that it is
closed under addition and scalar multiplication!
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Definition
A subset U of a vector space V is called a subspace of V if U itself is a

vector space.

How to check if a subset U of V' is a subspace? Just make sure that it is
closed under addition and scalar multiplication!

Assume V is a vector space, and U is a subset of V. Then U is a
subspace of V if and only if

1. x+y e U, forall x,y € U,

2. cx € U, forall x € U and c € R.
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Definition

A subset U of a vector space V is called a subspace of V if U itself is a
vector space.

How to check if a subset U of V' is a subspace? Just make sure that it is
closed under addition and scalar multiplication!

Assume V is a vector space, and U is a subset of V. Then U is a
subspace of V if and only if

1. x+y e U, forall x,y € U,
2. cx € U, for all x € U and ¢ € R.

e So R!, R? R3, ... are all vector spaces.

@ The set of all vectors that lie on the same line (e.g. y = kx) form a
subspace (on the condition that the line also contains the 0 vector).
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Matrices

An m x n table A of elements aj; is called an (m, n) matrix:

aill ai2 ... din
ani a2 ... ap

A= . . . . 9 ajj € R
dml adm2 --- Amn

(herei=1,...,mand j=1,...,n).
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Matrices

An m x n table A of elements aj; is called an (m, n) matrix:

aill ai2 ... din
ani a2 ... ap

A= . . . . 9 ajj € R
dml adm2 --- Amn

(herei=1,...,mand j=1,...,n).

The set of all (m, n) matrices is denoted by R™*".
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An m X n table A of elements aj; is called an (m, n) matrix:

aill ai2 ... din
ani ano 0oo aon

A= 5 ajj € R
dml  dm2 dmn

(herei=1,...,mandj=1,...,n).

The set of all (m, n) matrices is denoted by R™*".

_ 3 2x3 =20 22
A=y & fems 5= {er
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An m X n table A of elements aj; is called an (m, n) matrix:

aill ai2 ... din
dni ano 0oo aon

A= 5 ajj € R
dml adm2 --- Amn

(herei=1,...,mandj=1,...,n).

The set of all (m, n) matrices is denoted by R™*".

A= |:1 2 3:| R2><3 B — |: 12 0:| R2><2

4 5 6 3

Note that the first number in (m, n) always shows rows, second — columns.
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Matrix Addition

The vectors are practically 1-column matrices: R” = R"%!. Similar to
vectors, we define the following operations with the matrices:
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Matrix Addition

The vectors are practically 1-column matrices: R” = R"%!. Similar to
vectors, we define the following operations with the matrices:

Definition
The sum of two matrices A and B, denoted as A + B, is obtained by
adding corresponding elements. If A is of size m x n and B is of the same
size, then A+ B is also of size m x n.
a1l aio “e din b11 b12 e bln
a1 axp ... ax b1 b ... by
A= | . . B=| . . .
ami am2 ... amn bmi bm2 ... bmn
ait+bi1 awp+bio ... ain+ big
A+ B— a1 +bx1 a4+ by ... ax,+ bop
amil + bml am2 + bm2 ... A@mn + bmn
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Matrix Addition

a=l3 4 =7 0

avo=[7 ]
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Matrix Addition

a=l3 4 =7 0

avo=[7 ]

4 7

Matrix addition is only defined for matrices of the same size.
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Matrix Addition

a=l3 4 =7 0

avo=[7 ]

4 7

Matrix addition is only defined for matrices of the same size.

What do you think happens if we multiply a matrix by a scalar?
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Scalar Multiplication of a Matrix

Definition
If Ais a matrix and c is any scalar, we define the product cA as the matrix:
all di2 ... din
ani a2 ... azp
c-A=c
dml adm2 -.- dmn
C - a1l c-di2 ... C-ain
C - ar1 c-axp ... C-ap
C-ami C:-3m2 ... C+amn
i.e. each element of the matrix is multiplied by the scalar c.
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Scalar Multiplication of a Matrix

Definition
If Ais a matrix and c is any scalar, we define the product cA as the matrix:
all di2 ... din
ani a2 ... azp
c-A=c-
dml adm2 -.- dmn
C - a1l c-di2 ... C-ain
C - ar1 c-axp ... C-ap
C-ami C:-3m2 ... C+amn
i.e. each element of the matrix is multiplied by the scalar c.

Scalar multiplication can be performed for any scalar ¢ and any matrix A.
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Negative of a Matrix

Similarly, we define the negative of a matrix to be the matrix with all
elements multiplied by —1:

Definition

The negative of a matrix A, denoted as —A, is obtained by changing the
sign of each element in the matrix.
aiil a2 ... din
a a ... a
A= _ |91 2n
dml adm2 --- dmn
—a11 —ai ... —ain
| —a21 —dz2 ... —aop
—aml —Aam?2 ... —Aamn
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Matrix Subtraction

Definition

The difference of two matrices A and B (both of the same size), denoted
as A — B, is obtained by subtracting corresponding elements:
alil di12 800 dln b11 b12 500 bl,,
A_ | a2 ... an B_ bo1 bx ... by
amli am2 ... amn bmi bm2 ... bmn
ai1 — b a2 —bix ... a1 — bin
A_pg_ |@1—b1 ax—bn ... an—by
ami—bmi am2—bm2 ... amn— bmn
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Matrix Subtraction

Definition

The difference of two matrices A and B (both of the same size), denoted
as A — B, is obtained by subtracting corresponding elements:
alil di2 ... din b11 b12 000 bl,,
A | @2 . an| g by b ... b2
dml dm2 --- dmn bml bm2 cee bmn
ain — b awx—bix ... a1y — b
A_pg_ |@1—b1 ax—bn ... an—by
ami — bm1 am2—bm2 ... ampn— bmn

What happens if we add a matrix to its negative?
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Zero Matrix

Definition
The zero matrix, denoted as O or Op,«,, is @ matrix where all elements
are zero.
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Zero Matrix

Definition
The zero matrix, denoted as O or Op,«,, is @ matrix where all elements
are zero.

Of course, adding O has no effect on a matrix:

For any zero matrix O of the same size as matrix A, we have

A+O0=0+A=A
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Transpose of a Matrix

The transpose of a matrix A, denoted as AT, is obtained by swapping its
rows and columns.

a1 d12 ... din a1 a2 ... dmi

a1 a2 ... dap T a2 a2 ... dm2
A= AT =

dml adm2 .- Admn diln ad2n --- dmn
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Transpose of a Matrix

The transpose of a matrix A, denoted as AT, is obtained by swapping its
rows and columns.
a1 a2 ... ain ail 421 ... dml
a1 a2 ... dap T a2 a2 ... dm2
A= | . . . Al =
dml dm2 --- dmn dln d2n ... dmn
Example
7 0
7 4 2
A= [o ) 3] AT =4 1
2 -3
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A= | . . . Al =
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Example
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7 4 2
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Transpose of a Matrix

The transpose of a matrix A, denoted as AT, is obtained by swapping its
rows and columns.
a1 a2 ... ain ail 421 ... dml
a1 a2 ... dap T a2 a2 ... dm2
A= | . . . Al =
dml dm2 --- dmn dln d2n ... dmn
Example
7 0
7 4 2
A= [o ) 3] AT =4 1
2 -3

If Aisan (m, n) matrix, then AT is an (n, m) matrix.
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Matrices can be added together and multiplied by numbers, and these

operations share the same "good” properties (e.g. A+ B = B + A) with
vectors.
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Matrices can be added together and multiplied by numbers, and these
operations share the same "good” properties (e.g. A+ B = B + A) with

vectors.

In that sense, it is not difficult to prove that:

For each fixed (m, n), the set R™*" of all m x n matrices forms a vector

space.
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Matrices can be added together and multiplied by numbers, and these
operations share the same "good” properties (e.g. A+ B = B + A) with

vectors.

In that sense, it is not difficult to prove that:

For each fixed (m, n), the set R™*" of all m x n matrices forms a vector

space.

Okay, but why do we need matrices at all?
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

alil di2 ... din . A1 . %1

dni a2 ... ap . A2 e Vo
A=| T T T = . v=

ami am2 .- damn o AL L Vi
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

alil di2 ... din . A1 . %1

dni a2 ... ap . A2 e Vo
A= | . o = : V=

dmi dm2 .- Ad@mn N Am . Vn

To multiply A by v, we take each row of A and compute its dot product
with the vector v:
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

alil di2 ... din . A1 . %1

dni a2 ... ap . A2 e Vo
A= | . o = : V=

dmi dm2 .- Ad@mn N Am . Vn

To multiply A by v, we take each row of A and compute its dot product
with the vector v:

A1‘V

Aprikyan, Tarkhanyan Lecture 2 23/33



Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

alil di2 ... din . A1 . %1

dni a2 ... ap . A2 e Vo
A= | . o = : V=

dmi dm2 .- Ad@mn N Am . Vn

To multiply A by v, we take each row of A and compute its dot product
with the vector v:

A1‘V
A2‘V
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

alil a12 ... din e Al N Vi

dni a2 ... aop . A2 e Vo
A= | . = : V=

dmi dm2 ... Ad@mn e Am . Vn

To multiply A by v, we take each row of A and compute its dot product

with the vector v:
A]_ -V
A2 ")
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Matrix-Vector Multiplication

Let's define the multiplication of a matrix by a vector

Say, we have a matrix A € R™*" and a vector v € R":

alil a12 ... din e Al Vi
dni a2 ... aop . A2 Vo

A= | . = v=|.
ami am2 --.- amn ... Apn

To multiply A by v, we take each row of A and compute its dot product
with the vector v:

A]_‘V
AQ-V

A, v
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Matrix-Vector Multiplication

Let's define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

a11 a12

ani a2
A=

Aml am2

din . A1 e Vi

aon PN A2 Vo
= vV =

amn ... A Vi

To multiply A by v, we take each row of A and compute its dot product

with the vector v:

A1-V
A2~V

A, v

Aprikyan, Tarkhanyan
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Matrix-Vector Multiplication

Let’s define the multiplication of a matrix by a vector.

Say, we have a matrix A € R™*" and a vector v € R":

a1l a12 ... din . A1 Vi

dni a2 ... ap ce A2 %)
A = i = Vv =

ami am2 ... amn ... A Vi

To multiply A by v, we take each row of A and compute its dot product
with the vector v:

Ai-v aiivi + awve + ...+ ainVn
A v ar1Vi + ax»vo + ...+ axVvh
A,-v amiVi+ amaVvo + ...+ amnVn

As a result we get a new vector of size m x 1.
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Matrix-Vector Multiplication

Definition

Let A be an m X n matrix and v be a column vector of size n x 1. The
product Av is a column vector of size m x 1 obtained by multiplying each
row of A by the corresponding element of v and summing the results.

dlil aio coo din Vi

dan1 ano N aon Vo
A= =

admi dm2 ... Aamn Vn

ai1vi + apve + ...+ 31nVn

ariVvi+ a»vw + ...+ apv,
Av = )

amiVi+ amaVvo + ...+ @mnVn
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Matrix-Vector Multiplication
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Matrix-Vector Multiplication

2

1 23
A:[ ] v= -1
4 5 6 3

S e
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Matrix-Vector Multiplication

ol [}

Av= [igiﬁﬁjgigg] - [291]

(=2)-4+1-2 —6
Av=| 0-443.2 | =16
i)l
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Matrix-Vector Multiplication

Matrix-vector multiplication shares properties with scalar multiplication
and addition of vectors.

o Distributive Property:
For a matrix A and vectors v and w of appropriate sizes:

A(v+w) = Av + Aw

@ Scalar Multiplication:
For a matrix A and a scalar c:

A(cv) = c(Av)
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Matrix-Vector Multiplication

Matrix-vector multiplication shares properties with scalar multiplication
and addition of vectors.

o Distributive Property:
For a matrix A and vectors v and w of appropriate sizes:

A(v+w) = Av + Aw

@ Scalar Multiplication:
For a matrix A and a scalar c:

A(cv) = c(Av)

Note that we can only multiply a matrix by a vector if the number of
columns of the matrix equals the length of the vector
(i.e. not all matrices and vectors can be multiplied)!

Aprikyan, Tarkhanyan Lecture 2 27/33



Geometric Interpretation

Why do we define the matrix-vector multiplication this way? Turns out, it
has a beautiful geometrical interpretation.
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Geometric Interpretation

Why do we define the matrix-vector multiplication this way? Turns out, it
has a beautiful geometrical interpretation.

Think this way: when you multiply, say, a 2 x 2 matrix A by a vector
v € R?, what you get is another vector u = Av € R2. We call this u the
transformed version of v (and we say that A is a linear transformation).

¥ Y

Aer

€ —

AC|

X X
€]
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Geometric Interpretation

As we will see later, the resulting "transformed version” u is just the same

old v except it is rotated and scaled to become longer or shorter (and
possibly, flipped).
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visualize-it.github.io/linear_transformations/simulation.html
www.shad.io/MatVis

Geometric Interpretation

As we will see later, the resulting "transformed version” u is just the same
old v except it is rotated and scaled to become longer or shorter (and
possibly, flipped).

In this sense, all matrices are either just rotating vectors by some degree,
or flipping them horizontally/vertically, or scale them, or do all three.

The key thing is: whatever a matrix "does” to one vector, it does the
same to all other vectors too (when being multiplied with them).

Check different matrices yourself:
- visualize-it.github.io/linear_transformations/simulation.html
- www.shad.io/MatVis

We will learn more about this later-now back to matrices~
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Matrix Multiplication

Definition

Let A be an m X n matrix, and let B be an n x k matrix. The product
C = AB is an m x k matrix, where each element cjj is the dot product of
the it row of A and the jt" column of B:
a1 a2 ... ain b1 bip ... bk
a a ... a b b b
A= |32 22 2n B— |Pa1 D2 2k
dml dm2 --- dmn bn1 b2 ... bpk
i1 C2 ... Cik
C: C: ... ¢
C—AB— | @t 22 2k
Cml Cm2 e Cmk
where Cij = a,-1b1j + aigsz + ...+ a,-,,b,,j.

Aprikyan, Tarkhanyan Lecture 2

30/33



Matrix Multiplication

1 2 5 6 19 22
3 4 /7 8 43 50

1 x6 +2 x8 = 22
1 x5 +2 x(7 =19
3 X(b +4 x(7 = 43

3 X6 +4 x(8 = b0
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Matrix Multiplication

Matrix multiplication shares properties with scalar multiplication and
addition of vectors, as well as matrix-vector multiplication.

o Distributive Property:
AB+ C)=AB+ AC and (A+B)C=AC+ BC
@ Associative Property:
A(BC) = (AB)C
@ Scalar Multiplication:

A(cB) = ¢(AB) = (cA)B
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Matrix Multiplication

Matrix multiplication shares properties with scalar multiplication and
addition of vectors, as well as matrix-vector multiplication.

o Distributive Property:
AB+ C)=AB+ AC and (A+B)C=AC+ BC
@ Associative Property:
A(BC) = (AB)C
@ Scalar Multiplication:
A(cB) = ¢(AB) = (cA)B

Note that we can only multiply A and B if the (number of columns in A)
equals the (number of rows in B): (m x n) with (n x k).

In particular, this means that matrix multiplication is not commutative,
i.e. in general, AB # BA'|
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Matrix Multiplication

Let
-1 0
C=1|2 =3|eRr3*? p=1|> 21 c R2*3
3 0 7
4 1
-1-54+0-3 -1-(-2)+0-0 —-1-1+0-7
CD=12-5+(-3)-3 2-(-2)+(-3)-0 2-14+(=3)-7
4.54+1-3 4.(-2)4+1-0 4.-141-7
-5 2 -1
1 —4 —19| e R3*3
23 -8 11

Aprikyan, Tarkhanyan Lecture 2

33/33



Matrix Multiplication

Let
-1 0
c=|2 -3ler® p=|> 2 lcpxs
3 0 7
4 1
-1-54+0-3 -1-(-2)+0-0 —-1-1+0-7
CD=12-54+(-3)-3 2-(—=2)+(-3)-0 2-14(=3)-7
4.54+1-3 4.(-2)4+1-0 4.-141-7
-5 2 -1
1 —4 —19| e R®3
23 -8 11
What about DC?
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