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@ Suppose one has 2 x 10 dram, 1 x 20 dram, 2 x 50 dram, and 1 x 200
dram coins in his pocket.
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Coins | Quantity
10 2
20 1
50 2
100 0
200 1
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@ Suppose one has 2 x 10 dram, 1 x 20 dram, 2 x 50 dram, and 1 x 200
dram coins in his pocket.

@ How can we denote that?
@ Using a table:

Coins | Quantity

10 2
20 1
50 2
100 0
200 1

10 2

20 1

@ Or by taking the two columns of the table: | 50 |, |2

100 0

200 1
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Vectors

Definition
An ordered set of n real numbers is called a vector (or column vector) in
R":

Vi
V2
Vv —
Vn
where v1, vs, ..., v, are the components of the vector.

A vector written horizontally is called a row vector:

V:[Vl Vo ... Vn]

We will denote v € R” to indicate that v is a vector in R”.
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An ordered set of n real numbers is called a vector (or column vector) in
R":

Vi
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where v1, vs, ..., v, are the components of the vector.

A vector written horizontally is called a row vector:

V:[Vl Vo ... Vn]

We will denote v € R” to indicate that v is a vector in R”.
Vectors in R1
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Vectors

Definition
An ordered set of n real numbers is called a vector (or column vector) in
R":

Vi
V2
Vv —
Vn
where v1, vs, ..., v, are the components of the vector.

A vector written horizontally is called a row vector:

V:[Vl Vo ... Vn]

We will denote v € R” to indicate that v is a vector in R".
Vectors in R! are real numbers: [v] € R.
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Examples of Vectors in R”

V] =

Vo =

V3 =

Vg =

Vp =

Aprikyan, Tarkhanyan

2

—1| (3-dimensional column vector)
1

1 . .

1 (4-dimensional column vector)
11
-3 . .

5 (2-dimensional column vector)
[0

0| (Zero vector in 3-dimensional space)
0

[1 —1 2] (3-dimensional row vector)
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Addition of vectors

10 2
20 1
Let's denotea= | 50 |, b= |2
100 0
200 1
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Addition of vectors

10 2
20 1
Let's denotea= | 50 |, b= |2]| . a,b € R®.
100 0
200 1
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Addition of vectors

10 2
20 1
Let's denotea= | 50 |, b= |2 . a,b € R®>. What if someone gave us
100 0
200 1

3 x 100 drams and 1 x 200 drams?
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Addition of vectors

10 2
20 1
Let's denotea= | 50 |, b= |2 . a,b € R®>. What if someone gave us
100 0
200 1
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Addition of vectors

10 2
20 1
Let's denotea= | 50 |, b= |2 . a,b € R®>. What if someone gave us
100 0
200 1
0
0
3 x 100 drams and 1 x 200 drams? Denote c = |0 .
3
1
We would have the following coins:
2 0 240 2
1 0 140 1
b+c= |2+ (0| =[2+0] = |2
0 3 0+3 3
1 1 141 2
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Addition of vectors

vi uy

V2 uz | .
To add two vectorsv= | . | andu= [ . | in R”, add their

Vi Up

corresponding components:
Vi + up
Vo + U
v+u=

Vpn + Up
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Addition of vectors

vi uy

V2 uz | .
To add two vectorsv= | . | andu= [ . | in R”, add their

Vi Up

corresponding components:
Vi + up
Vo + U
v+u=

Vpn + Up

Note that we can only add two vectors if they are of the same length!
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Multiplication of vector by scalar

What if the money in our pockets doubled?
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Multiplication of vector by scalar

What if the money in our pockets doubled? We would have:

2.b=2-

HON RN
Il
NO BN A

from each coin.
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Multiplication of vector by scalar

%1
. V2 . .
To multiply a vector v= | . | by a scalar ¢ in R”, multiply each

Vn
component of the vector by the scalar:
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Properties of Vectors

Associativity and Commutativity of Vector Addition

For any vectors u and v in R", the vector addition is commutative and
associative:
ut+v=v+u

(u+v)+w=u+(v+w)
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Properties of Vectors

Associativity and Commutativity of Vector Addition

For any vectors u and v in R", the vector addition is commutative and
associative:

ut+tv=v-+u
(u+v)+w=u+(v+w)

v

Associativity and Commutativity of Scalar Multiplication

For any scalar ¢ and vectors v and u in R”, scalar multiplication is
associative and commutative:

c-(v+tu)=c-v+c-u

(c-d)-v=c-(d-v)
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Vector Subtraction

What if we buy something and spend 2 x 50 drams?
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Vector Subtraction

What if we buy something and spend 2 x 50 drams?

Definition
Vi
V2| . .
For a vector v= | . | in R”, the negative of v, denoted as —v, is
Vn

obtained by negating each component:
v
—v

—Vv =

_Vn
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Vector Subtraction

Vector Subtraction

The subtraction of vectors u and v in R” is defined as the sum of u and
the negative of v:

u—w

u — v
u—v=u+(-v)=

Up — Vp
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Vector Subtraction

Vector Subtraction

The subtraction of vectors u and v in R” is defined as the sum of u and
the negative of v:

u—w

u — v
u—-v=u+(—-v)= :

Up — Vp

1
~1| - 4| = |-1-4| = |-5
0

3-0 3
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Vector Transposition

%1
o T -
For a column vector v= [ _ | in R”, the transpose, denoted as v’ is a
Vn
row vector:
-
vV = [Vl Vo Vn]
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Vector Transposition

Definition
%1
V2| T
For a column vector v= [ _ | in R”, the transpose, denoted as v’ is a
Vn
row vector:
VT = [Vl V2 .. Vn]
For a row vector u = [ul up - u,,} in R", the transpose, denoted as

u’, is a column vector:
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Vector Transposition

Examples:

-1 =[2 -1 3]
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Vector Transposition

Examples:
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Vector Transposition

Examples:
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Vector Transposition

Examples:

Transpose Properties

e For any vector vin R”, (v1)T =v

e For any scalar ¢, (c-v)" =c-v’
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Dot Product of Vectors

2 10
1 20
In our example we had b = |2| coins of a= | 50 | nominations (values)
0 100
1 200

respectively.
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Dot Product of Vectors

10
20
coins of a = | 50 | nominations (values)
100
200

In our example we had b =

= O N DN

respectively.
How much money do we have in total?
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Dot Product of Vectors

2 10
1 20
In our example we had b = |2| coins of a= | 50 | nominations (values)
0 100
1 200
respectively.
How much money do we have in total?
Definition
uy Vi
u2 V2| . .
The dot product of two vectorsu= | | andv=| . | in R" is:
Up 7
U-v=up -vit+u Vo+--+uUp vy )
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Dot Product of Vectors

If u= —1 and v = , then:

(2:1)+(-1-4)+(3:0)=2—4+0=—

:
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Dot Product of Vectors

If u= —1 and v = 4 , then:

u-v=(2-1)+(-1-4)+(3-00=2—-4+0=—

Going back to our example, we can calculate our money with the dot
product of a and b:

2 10
1 20
a-b= |2 50| =2-104+1-20+2-50+0-100+1-200 = 340
0 100
1 200
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Dot Product of Vectors

The dot product of two vectors is defined if and only if the vectors have
the same number of components (i.e. are of the same length).

The dot product of two vectors is a number (scalar), not a vector.
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Dot Product of Vectors

The dot product of two vectors is defined if and only if the vectors have
the same number of components (i.e. are of the same length).

The dot product of two vectors is a number (scalar), not a vector.

This is why the dot product is often called scalar product.
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Properties of Dot Product

Properties

Let u, v, and w be vectors in R”, and let ¢ be a scalar. The dot product
has the following properties:

© Commutativity:
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Properties of Dot Product

Properties

Let u, v, and w be vectors in R”, and let ¢ be a scalar. The dot product
has the following properties:

© Commutativity:
u-v=v-u

© Distributivity over Vector Addition:

(utv) w=u-w+v-w
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Properties of Dot Product

Properties

Let u, v, and w be vectors in R”, and let ¢ be a scalar. The dot product
has the following properties:

© Commutativity:
u-v=v-u

© Distributivity over Vector Addition:

(u+v) - w=u-w+v-w

© Scalar Multiplication:

(ccu)-v=c-(u-v)=u-(c-v)
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Properties of Dot Product

Properties

Let u, v, and w be vectors in R”, and let ¢ be a scalar. The dot product
has the following properties:

© Commutativity:
u-v=v-u

© Distributivity over Vector Addition:

(u+v) - w=u-w+v-w

© Scalar Multiplication:

(ccu)-v=c-(u-v)=u-(c-v)

@ Non-negativity:
u-u>0
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Properties of Dot Product

Properties

Let u, v, and w be vectors in R”, and let ¢ be a scalar. The dot product
has the following properties:

© Commutativity:
u-v=v-u
© Distributivity over Vector Addition:
(u+v) - w=u-w+v-w

© Scalar Multiplication:

(ccu)-v=c-(u-v)=u-(c-v)

@ Non-negativity:
u-u>0andu-u=0ifandonlyifu=20
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1 0 -2
Consider vectorsu= |—-2|,v=| 4 |[,andw= | 1

Let's calculate (5u — v) - w:
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Consider vectors u =

Let's calculate (5u — v) - w:

(bu—v) w=

Aprikyan, Tarkhanyan

1
-2
3

0 -2
,v= |4 ],andw= |1
-1 2
0 -2
_ | 4 1
-1 2
0 -2
_ | 4 1
-1 2
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Geometric interpretation of vectors

So far, we were treating vectors in R” as lists of numbers only. Take, for
example, the 2d vector
-0
3
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Geometric interpretation of vectors

So far, we were treating vectors in R” as lists of numbers only. Take, for
example, the 2d vector
-0
3

As a useful abstraction, we can imagine v in two ways:
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@ We can imagine v as a point in the 2d space with coordinates (2, 3):

(2,3)
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Geometric interpretation of vectors

So far, we were treating vectors in R” as lists of numbers only. Take, for
example, the 2d vector
-0
3

As a useful abstraction, we can imagine v in two ways:

@ We can imagine v as a point in the 2d space with coordinates (2, 3):

@ or as an arrow in space, pointing from (0,0) to the mentioned point.
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Geometric interpretation of vectors

x| . . :
In other words, every 2d vector [y} is essentially an arrow starting from

the origin (0,0) and pointing to the point (x,y),
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Geometric interpretation of vectors

x| . . :
In other words, every 2d vector [y} is essentially an arrow starting from

the origin (0,0) and pointing to the point (x,y), or just that point in the
2d space itself.
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Geometric interpretation of vectors

x| . . :
In other words, every 2d vector [y} is essentially an arrow starting from

the origin (0,0) and pointing to the point (x,y), or just that point in the
2d space itself.

What do you think happens in the 3d space?
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Geometric interpretation of vectors

x| . . :
In other words, every 2d vector [y} is essentially an arrow starting from

the origin (0,0) and pointing to the point (x,y), or just that point in the
2d space itself.

What do you think happens in the 3d space? What about higher
dimensions?
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Addition of vectors

Let's interpret some of our vector operations geometrically.

o Addition: To add vectors u and v, place the tail of v at the head of
u. The sum u—+ v is the vector pointing from the tail of u to the head
of v.
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Negative of vectors

@ Negation: The negative of a vector v, denoted —v, is a vector with
the same magnitude but opposite direction.
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Subtraction of vectors

@ Subtraction: To subtract v from u, place them at the same point.
Then connect the tail of v to the tail of u.
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Multiplication by scalar

@ Scalar Multiplication: Scaling a vector v by a scalar ¢ stretches or
compresses the vector. The result ¢ - v has the same direction as v
but a different magnitude.
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Multiplication by scalar

@ Scalar Multiplication: Scaling a vector v by a scalar ¢ stretches or
compresses the vector. The result ¢ - v has the same direction as v
but a different magnitude.

What do you think happens if ¢ is negative?
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Let a = [3,2] and b = [2,0]. We want to find 3a + b. \
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Let a = [3,2] and b = [2,0]. We want to find 3a + b. \

Algebraically:

3a+b=3-[3,2]+[20]
=[9,6] + [2,0]
= [11,6]
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Let a = [3,2] and b = [2,0]. We want to find 3a + b. \

Algebraically:

3a+b=3-[3,2]+[20]
=[9,6] + [2,0]
= [11,6]

How can we interpret it geometrically?
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Example

3a+b
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3a+b

b

It is like asking directions and being instructed to go 3 steps in the
direction of a, and then 1 step in the direction of b.
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Norm

What if we want to measure the length of some vector?
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Norm

What if we want to measure the length of some vector?

What we can say, is that

the length of the vector

the distance between O and A.
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Norm

But how to measure distance?
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Norm

But how to measure distance?

g For a bishop, the distance to its

upper-right neighbor is 1.

g While for a rook, it is 2.
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Norm

But how to measure distance?

g For a bishop, the distance to its

upper-right neighbor is 1.

g While for a rook, it is 2.

So there are different ways to measure distance and length.
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Norm

Vi
v | . . . .
For a vector v = in R”, its Euclidean norm or L2 norm is:

Vn

Ivllo = V2 + v+ + 2

or, equivalently,

lvl2 =vv-v
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Norm

Vi
v | . . . .
For a vector v = in R”, its Euclidean norm or L2 norm is:

Vn

Illo = 2+ G+ 42

or, equivalently,

lvl2 =vv-v

Let v = [ﬂ The Euclidean norm of v is:

Ivlo = V32 +42=5
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Norm

Vi
v | . . . .
For a vector v = in R”, its Euclidean norm or L2 norm is:

Vn

Illo = 2+ G+ 42

or, equivalently,

lvl2 =vv-v

Let v = [ﬂ The Euclidean norm of v is:

vl = v/32 +42 =5

Euclidean norm is the standard length we use in classic geometry.
Sometimes we omit the little "2" and just write ||v|| instead of ||v]|».
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Norm

Vi

V2

For a vector v = in R"”, its Manhattan norm or L1 norm is:

Vn

vl = Jval + |va| +- - 4 [val
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Norm

Vi

V2

For a vector v = in R"”, its Manhattan norm or L1 norm is:

Vn

Ivlle = [va| + [va| + - - + [val

Let v = [ﬂ The Manhattan norm of v is:

Ivlls = 3]+ [4] =7
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Norm

As we have seen, there are different types of norms (=many different ways

to calculate the length of a vector), and one of them is chosen depending
on the problem.
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Norm

As we have seen, there are different types of norms (=many different ways

to calculate the length of a vector), and one of them is chosen depending
on the problem.

Notice, however, that independently of which one we take, all norms
always satisfy the following three properties:

@ |lv|| >0, and equals 0 if only if v =10,
Q |[ev] = e[ - [lv],
Q [lv+ ull < [lv][ + [Jull.

a+b
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Norm

Using the concept of norm, we can now measure the distance between
two points as the length of the vector connecting them:

y
4 (22 4 w2)

® Manhattan Distance [1

Euclidean Distance L2

L' = |xp — 21|+ |ya — 1

(21 s 11)

L2 = (2 —x)2 + (y2 —11)?

v
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