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Vectors

Suppose one has 2 x 10 dram, 1 x 20 dram, 2 x 50 dram, and 1 x 200
dram coins in his pocket.

How can we denote that?

Using a table:

Coins Quantity
10 2

20 1

50 2

100 0

200 1

Or by taking the two columns of the table:


10
20
50
100
200

,

2
1
2
0
1


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Vectors

Definition

An ordered set of n real numbers is called a vector (or column vector) in
Rn:

v =


v1
v2
...
vn


where v1, v2, . . . , vn are the components of the vector.
A vector written horizontally is called a row vector:

v =
[
v1 v2 . . . vn

]
We will denote v ∈ Rn to indicate that v is a vector in Rn.

Vectors in R1 are real numbers: [v ] ∈ R.
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Examples of Vectors in Rn

v1 =

 2
−1
0

 (3-dimensional column vector)

v2 =


1
1
1
1

 (4-dimensional column vector)

v3 =

[
−3
2

]
(2-dimensional column vector)

v4 =

00
0

 (Zero vector in 3-dimensional space)

v5 =
[
1 −1 2

]
(3-dimensional row vector)
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Addition of vectors

Let’s denote a =


10
20
50
100
200

, b =


2
1
2
0
1

 .

a,b ∈ R5. What if someone gave us

3× 100 drams and 1× 200 drams? Denote c =


0
0
0
3
1

.
We would have the following coins:

b+ c =


2
1
2
0
1

+


0
0
0
3
1

 =


2 + 0
1 + 0
2 + 0
0 + 3
1 + 1

 =


2
1
2
3
2


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Addition of vectors

Definition

To add two vectors v =


v1
v2
...
vn

 and u =


u1
u2
...
un

 in Rn, add their

corresponding components:

v + u =


v1 + u1
v2 + u2

...
vn + un



Note that we can only add two vectors if they are of the same length!
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Multiplication of vector by scalar

What if the money in our pockets doubled?

We would have:

2 · b = 2 ·


2
1
2
0
1

 =


4
2
4
0
2


from each coin.
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Multiplication of vector by scalar

Definition

To multiply a vector v =


v1
v2
...
vn

 by a scalar c in Rn, multiply each

component of the vector by the scalar:

c · v =


c · v1
c · v2
...

c · vn


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Properties of Vectors

Associativity and Commutativity of Vector Addition

For any vectors u and v in Rn, the vector addition is commutative and
associative:

u+ v = v + u

(u+ v) +w = u+ (v +w)

Associativity and Commutativity of Scalar Multiplication

For any scalar c and vectors v and u in Rn, scalar multiplication is
associative and commutative:

c · (v + u) = c · v + c · u

(c · d) · v = c · (d · v)
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Vector Subtraction

What if we buy something and spend 2 x 50 drams?

Definition

For a vector v =


v1
v2
...
vn

 in Rn, the negative of v, denoted as −v, is

obtained by negating each component:

−v =


−v1
−v2
...

−vn


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Vector Subtraction

Vector Subtraction

The subtraction of vectors u and v in Rn is defined as the sum of u and
the negative of v:

u− v = u+ (−v) =


u1 − v1
u2 − v2

...
un − vn



Example  2
−1
3

−

14
0

 =

 2− 1
−1− 4
3− 0

 =

 1
−5
3


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Vector Transposition

Definition

For a column vector v =


v1
v2
...
vn

 in Rn, the transpose, denoted as vT , is a

row vector:

vT =
[
v1 v2 · · · vn

]

For a row vector u =
[
u1 u2 · · · un

]
in Rn, the transpose, denoted as

uT , is a column vector:

uT =


u1
u2
...
un


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Vector Transposition

Examples:  2
−1
3

T

=
[
2 −1 3

]

[
1 0 −2

]T
=

 1
0
−2


Transpose Properties

For any vector v in Rn, (vT )T = v

For any scalar c , (c · v)T = c · vT
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Dot Product of Vectors

In our example we had b =


2
1
2
0
1

 coins of a =


10
20
50
100
200

 nominations (values)

respectively.

How much money do we have in total?

Definition

The dot product of two vectors u =


u1
u2
...
un

 and v =


v1
v2
...
vn

 in Rn is:

u · v = u1 · v1 + u2 · v2 + · · ·+ un · vn
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Dot Product of Vectors

Example

If u =

 2
−1
3

 and v =

14
0

, then:
u · v = (2 · 1) + (−1 · 4) + (3 · 0) = 2− 4 + 0 = −2

Going back to our example, we can calculate our money with the dot
product of a and b:

a · b =


2
1
2
0
1

 ·


10
20
50
100
200

 = 2 · 10 + 1 · 20 + 2 · 50 + 0 · 100 + 1 · 200 = 340
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 = 2 · 10 + 1 · 20 + 2 · 50 + 0 · 100 + 1 · 200 = 340
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Dot Product of Vectors

Remark 1

The dot product of two vectors is defined if and only if the vectors have
the same number of components (i.e. are of the same length).

Remark 2

The dot product of two vectors is a number (scalar), not a vector.

This is why the dot product is often called scalar product.
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Properties of Dot Product

Properties

Let u, v, and w be vectors in Rn, and let c be a scalar. The dot product
has the following properties:

1 Commutativity:
u · v = v · u

2 Distributivity over Vector Addition:

(u+ v) ·w = u ·w + v ·w

3 Scalar Multiplication:

(c · u) · v = c · (u · v) = u · (c · v)

4 Non-negativity:
u · u ≥ 0

and u · u = 0 if and only if u = 0
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Examples

Consider vectors u =

 1
−2
3

, v =

 0
4
−1

, and w =

−2
1
2

.
Let’s calculate (5u− v) ·w:

(5u− v) ·w =

5 ·

 1
−2
3

−

 0
4
−1

 ·

−2
1
2


=

 5
−10
15

−

 0
4
−1

 ·

−2
1
2


=

 5
−14
16

 ·

−2
1
2

 = 5 · (−2) + (−14) · 1 + 16 · 2 = 8
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Geometric interpretation of vectors

So far, we were treating vectors in Rn as lists of numbers only. Take, for
example, the 2d vector

v =

[
2
3

]

As a useful abstraction, we can imagine v in two ways:

We can imagine v as a point in the 2d space with coordinates (2, 3):

x

y

(2, 3)

v

or as an arrow in space, pointing from (0, 0) to the mentioned point.
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Geometric interpretation of vectors

In other words, every 2d vector

[
x
y

]
is essentially an arrow starting from

the origin (0, 0) and pointing to the point (x , y),

or just that point in the
2d space itself.

Question

What do you think happens in the 3d space? What about higher
dimensions?
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Addition of vectors

Let’s interpret some of our vector operations geometrically.

Addition: To add vectors u and v, place the tail of v at the head of
u. The sum u+ v is the vector pointing from the tail of u to the head
of v.

u
v

u+ v
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Negative of vectors

Negation: The negative of a vector v, denoted −v, is a vector with
the same magnitude but opposite direction.

v

−v

Aprikyan, Tarkhanyan Lecture 1 22 / 32



Subtraction of vectors

Subtraction: To subtract v from u, place them at the same point.
Then connect the tail of v to the tail of u.

u
v

u− v
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Multiplication by scalar

Scalar Multiplication: Scaling a vector v by a scalar c stretches or
compresses the vector. The result c · v has the same direction as v
but a different magnitude.

v

2 · v

What do you think happens if c is negative?

Aprikyan, Tarkhanyan Lecture 1 24 / 32



Multiplication by scalar

Scalar Multiplication: Scaling a vector v by a scalar c stretches or
compresses the vector. The result c · v has the same direction as v
but a different magnitude.

v

2 · v

What do you think happens if c is negative?

Aprikyan, Tarkhanyan Lecture 1 24 / 32



Example

Example

Let a = [3, 2] and b = [2, 0]. We want to find 3a+ b.

Algebraically:

3a+ b = 3 · [3, 2] + [2, 0]

= [9, 6] + [2, 0]

= [11, 6]

How can we interpret it geometrically?
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Example

a

b

3a

b

3a+ b
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Example

a

b

3a

b

3a+ b

It is like asking directions and being instructed to go 3 steps in the
direction of a, and then 1 step in the direction of b.
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Norm

What if we want to measure the length of some vector?

What we can say, is that

the length of the vector

=

the distance between O and A.
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Norm

But how to measure distance?

For a bishop, the distance to its
upper-right neighbor is 1.

While for a rook, it is 2.

So there are different ways to measure distance and length.
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Norm

For a vector v =


v1
v2
. . .
vn

 in Rn, its Euclidean norm or L2 norm is:

∥v∥2 =
√
v21 + v22 + · · ·+ v2n

or, equivalently,
∥v∥2 =

√
v · v

Example

Let v =

[
3
4

]
. The Euclidean norm of v is:

∥v∥2 =
√

32 + 42 = 5

Euclidean norm is the standard length we use in classic geometry.
Sometimes we omit the little ”2” and just write ∥v∥ instead of ∥v∥2.
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Norm

For a vector v =


v1
v2
. . .
vn

 in Rn, its Manhattan norm or L1 norm is:

∥v∥1 = |v1|+ |v2|+ · · ·+ |vn|

Example

Let v =

[
3
4

]
. The Manhattan norm of v is:

∥v∥1 = |3|+ |4| = 7
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Norm

As we have seen, there are different types of norms (=many different ways
to calculate the length of a vector), and one of them is chosen depending
on the problem.

Notice, however, that independently of which one we take, all norms
always satisfy the following three properties:

1 ∥v∥ ≥ 0, and equals 0 if only if v = 0,

2 ∥cv∥ = |c | · ∥v∥,
3 ∥v + u∥ ≤ ∥v∥+ ∥u∥.
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Norm

Using the concept of norm, we can now measure the distance between
two points as the length of the vector connecting them:
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