Sets, Functions, Combinatorics

Hayk Aprikyan, Hayk Tarkhanyan

Discussion of main ideas during the lecture Important: Ask questions!

- Discussion of main ideas during the lecture Important: Ask questions!
- Reading assigned chapters after the lecture

- Discussion of main ideas during the lecture Important: Ask questions!
- Reading assigned chapters after the lecture
- Working on homework exercises

- Discussion of main ideas during the lecture Important: Ask questions!
- Reading assigned chapters after the lecture
- Working on homework exercises

- Discussion of main ideas during the lecture Important: Ask questions!
- Reading assigned chapters after the lecture
- Working on homework exercises (this is the most important part of the course)

- Discussion of main ideas during the lecture Important: Ask questions!
- Reading assigned chapters after the lecture
- Working on homework exercises (this is the most important part of the course)

The main resources can be found here:

- Textbooks
- Very short manual (in Armenian)
- More materials for further reading (see here)

2/30

Suppose we have a collection of objects. How can we write them down?

Suppose we have a collection of objects. How can we write them down?

One of the most standard ways is to write them as sets:

- {♂, ♣}
- { = , = , = , = , = }
- {1,4,5}
- {10, 40, -50}

Suppose we have a collection of objects. How can we write them down?

One of the most standard ways is to write them as sets:

- {♂, ♂}
- {1,4,5}
- {10, 40, -50}

We say that the objects in the set are the **elements** of that set, and we write

$$\bigcirc$$
 $\in \{\bigcirc$,

Suppose we have a collection of objects. How can we write them down?

One of the most standard ways is to write them as sets:

- {1,4,5}
- {10, 40, -50}

We say that the objects in the set are the **elements** of that set, and we write

$$\bigcirc \in \{\bigcirc, \clubsuit\}$$

Usually we denote sets by capital letters,

Suppose we have a collection of objects. How can we write them down?

One of the most standard ways is to write them as sets:

- $B = \{ \stackrel{\leftarrow}{\bullet}, \stackrel{\rightarrow}{\circlearrowleft}, \stackrel{\rightleftharpoons}{\clubsuit}, \stackrel{\rightleftharpoons}{\ggg}, \stackrel{\rightarrow}{\clubsuit} \}$
- $C = \{1, 4, 5\}$
- $D = \{10, 40, -50\}$

We say that the objects in the set are the **elements** of that set, and we write

$$\bigcirc \in \{\bigcirc, \blacktriangleleft\}$$

Usually we denote sets by capital letters,

Suppose we have a collection of objects. How can we write them down?

One of the most standard ways is to write them as sets:

- $\bullet \ A = \{ \bigcirc, \emptyset \}$
- $B = \{ \{ \{ \}, \{ \}, \{ \}, \{ \}, \{ \}, \{ \} \} \}$
- $C = \{1, 4, 5\}$
- $D = \{10, 40, -50\}$

We say that the objects in the set are the **elements** of that set, and we write

$$\bigcirc$$
 $\in \{\bigcirc$,

Usually we denote sets by capital letters, so:

$$\bigcirc$$
 $\in A$, $4 \in C$

but $\triangle A$, $10 \notin C$.

If all elements of A also belong to B, we say that A is a **subset** of B (and B is a **superset** of A), and write $A \subset B$:

$$\{ \textcircled{\scriptsize{?}}, \clubsuit \} \ \subset \ \{ \textcircled{\scriptsize{\ddagger}}, \textcircled{\scriptsize{?}}, \clubsuit , \textcircled{\scriptsize{\$}}, \bigstar \}$$

but

$$\{1,4,5\} \not\in \{10,40,-50\}$$

4/30

If all elements of A also belong to B, we say that A is a **subset** of B (and B is a **superset** of A), and write $A \subset B$:

$$\{ \bigcirc, \emptyset \} \subset \{ \emptyset, \bigcirc, \bigcirc, \emptyset, \emptyset, \emptyset \}$$

but

$$\{1,4,5\} \not\in \{10,40,-50\}$$

Theorem

If $A \subset B$ and $B \subset A$, then A and B are equal: A = B.

If all elements of A also belong to B, we say that A is a **subset** of B (and B is a **superset** of A), and write $A \subset B$:

$$\{ \nearrow, \not = \} \subset \{ \not =, \nearrow, \not \longrightarrow, \not \Longrightarrow, \not = \}$$

but

$$\{1,4,5\} \not\in \{10,40,-50\}$$

Theorem

If $A \subset B$ and $B \subset A$, then A and B are equal: A = B.

Note that in sets, the order of elements does not matter:

$$\{1,4,7\} = \{7,1,4\}$$

and we ignore repeated elements:

$$\{1, 4, 4, 4, 7, 7\} = \{1, 4, 7\}$$

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, \ldots\}$
- integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

as well as:

- open intervals: (a, b) (not including a and b)
- closed intervals: [a, b] (including a and b)

like (0,1) and [0,1].

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

as well as:

- **open intervals:** (a, b) (not including a and b)
- closed intervals: [a, b] (including a and b)

like (0,1) and [0,1].

The set with no elements: $\{\}$, is called the **empty set**, and denoted by \emptyset .

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

as well as:

- **open intervals:** (a, b) (not including a and b)
- closed intervals: [a, b] (including a and b)

like (0,1) and [0,1].

The set with no elements: $\{\}$, is called the **empty set**, and denoted by \emptyset .

The number of elements of a set A is usually denoted by #A or |A|, e.g.

$$|\{1,2,6\}| = 3, \qquad |\varnothing| = 0$$

5/30

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

as well as:

- **open intervals:** (a, b) (not including a and b)
- closed intervals: [a, b] (including a and b)

like (0,1) and [0,1].

The set with no elements: $\{\}$, is called the **empty set**, and denoted by \emptyset .

The number of elements of a set A is usually denoted by #A or |A|, e.g.

$$|\{1,2,6\}| = 3, \qquad |\varnothing| = 0$$

Question

How much is $|\mathbb{N}|$?

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

as well as:

- **open intervals:** (a, b) (not including a and b)
- closed intervals: [a, b] (including a and b)

like (0,1) and [0,1].

The set with no elements: $\{\}$, is called the **empty set**, and denoted by \emptyset .

The number of elements of a set A is usually denoted by #A or |A|, e.g.

$$|\{1,2,6\}| = 3, \qquad |\varnothing| = 0$$

Question

How much is $|\mathbb{N}|$? What about |[0,1]|?

Some special sets that we will often use are:

- natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- all real numbers: $\mathbb{R} = (-\infty, +\infty)$

as well as:

- **open intervals:** (a, b) (not including a and b)
- closed intervals: [a, b] (including a and b)

like (0,1) and [0,1].

The set with no elements: $\{\}$, is called the **empty set**, and denoted by \emptyset .

The number of elements of a set A is usually denoted by #A or |A|, e.g.

$$|\{1,2,6\}| = 3, \qquad |\varnothing| = 0$$

Question

How much is $|\mathbb{N}|$? What about |[0,1]|? (more on this)

Suppose we have two sets A and B:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \triangleleft, \bowtie \}$$

We denote the elements that belong to

• both A and B by $A \cap B$:

$$A \cap B =$$

Suppose we have two sets A and B:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \triangleleft, \bowtie \}$$

We denote the elements that belong to

• both A and B by $A \cap B$:

$$A \cap B = \{ \nearrow \}$$

Suppose we have two sets A and B:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \triangleleft, \bowtie \}$$

We denote the elements that belong to

• both A and B by $A \cap B$:

$$A \cap B = \{ \overrightarrow{\phi} \}$$

and call it the **intersection** of A and B,

• either A or B (or both) by $A \cup B$:

$$A \cup B =$$

Suppose we have two sets A and B:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \bowtie \}$$

We denote the elements that belong to

• both A and B by $A \cap B$:

$$A \cap B = \{ \nearrow \}$$

and call it the **intersection** of A and B,

• either A or B (or both) by $A \cup B$:

$$A\cup B=\left\{ ^{\bullet}_{\bullet},\stackrel{\frown}{\bigcirc},\stackrel{\frown}{\longleftarrow},\stackrel{\frown}{\longleftarrow},\stackrel{\frown}{\longleftarrow}\right\}$$

Suppose we have two sets A and B:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \bowtie \}$$

We denote the elements that belong to

• both A and B by $A \cap B$:

$$A \cap B = \{ \nearrow \}$$

and call it the **intersection** of A and B,

• either A or B (or both) by $A \cup B$:

$$A \cup B = \{ \{ \emptyset, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc, \emptyset \}$$

and call it the **union** of A and B.

Suppose we have two sets A and B:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$

We denote the elements that belong to

• both A and B by $A \cap B$:

$$A \cap B = \{ \nearrow \}$$

and call it the **intersection** of A and B,

• either A or B (or both) by $A \cup B$:

$$A \cup B = \{ \stackrel{\leftarrow}{\bullet}, \stackrel{\frown}{\nearrow}, \stackrel{\frown}{\clubsuit}, \stackrel{\frown}{\ggg}, \stackrel{\frown}{\ggg} \}$$

6/30

and call it the **union** of A and B.

If $A \cap B = \emptyset$, we say that A and B are **disjoint** (i.e. they have no common elements).

Example

lf

$$A = \{1, 2, 3, 4, 5\}$$

and

$$B = \{4, 5, 6, 7, 8\}$$

find $A \cap B$ and $A \cup B$.

Example

lf

$$A = \{1, 2, 3, 4, 5\}$$

and

$$B = \{4, 5, 6, 7, 8\}$$

find $A \cap B$ and $A \cup B$.

Sometimes, if A is a subset of some known large set, e.g.

$$A=(0,7)\subset\mathbb{R}$$

we are also interested in the elements that belong to the large set, but not to A:

7/30

Example

lf

$$A = \{1, 2, 3, 4, 5\}$$

and

$$B = \{4, 5, 6, 7, 8\}$$

find $A \cap B$ and $A \cup B$.

Sometimes, if A is a subset of some known large set, e.g.

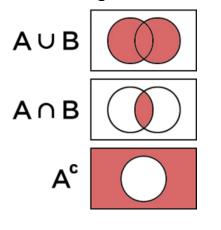
$$A=(0,7)\subset\mathbb{R}$$

we are also interested in the elements that belong to the large set, but not to A:

$$A^c = (-\infty, 0] \cup [7, +\infty)$$

We denote the set of those elements by A^c and call the **complement** of A.

Graphically, it is sometimes convenient to represent sets by diagrams, called **Venn diagrams**:



Union $A \cup B$:

All elements that belong to A or B or both

Intersection $A \cap B$:

All elements that belong to both A and B

Complement A^c :

All elements that do not belong to A

8/30

Inclusion-Exclusion Principle

Getting back to our example sets:

How much is $|A \cup B|$?

Inclusion-Exclusion Principle

Getting back to our example sets:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \triangleleft, \bowtie \}$$

How much is $|A \cup B|$?

Since |A| = 2 and |B| = 4, we might think that $|A \cup B| = |A| + |B| = 6$.

Inclusion-Exclusion Principle

Getting back to our example sets:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \triangleleft, \triangleleft, \bowtie \}$$

How much is $|A \cup B|$?

Since |A| = 2 and |B| = 4, we might think that $|A \cup B| = |A| + |B| = 6$. But this counts the common element \bigcirc twice!

Getting back to our example sets:

$$A = \{ \bigcirc, \blacktriangleleft \}, \qquad B = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$

How much is $|A \cup B|$?

Since |A| = 2 and |B| = 4, we might think that $|A \cup B| = |A| + |B| = 6$. But this counts the common element \bigcirc twice!

So, we have to subtract 1, i.e. the size of the intersection:

$$|A \cup B| = |A| + |B| - |A \cap B| = 2 + 4 - 1 = 5$$

Getting back to our example sets:

$$A = \{ \bigcirc, \bigcirc, \}, \qquad B = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$

How much is $|A \cup B|$?

Since |A| = 2 and |B| = 4, we might think that $|A \cup B| = |A| + |B| = 6$. But this counts the common element $\stackrel{\frown}{\longrightarrow}$ twice!

So, we have to subtract 1, i.e. the size of the intersection:

$$|A \cup B| = |A| + |B| - |A \cap B| = 2 + 4 - 1 = 5$$

Indeed,

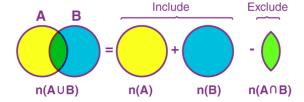
$$A \cup B = \{ \stackrel{\leftarrow}{\bullet}, \stackrel{\frown}{\bigcirc}, \stackrel{\frown}{\Longrightarrow}, \stackrel{\frown}{\Longrightarrow}, \stackrel{\frown}{\Longrightarrow} \}$$

9/30

has 5 elements.

This elegant law is called the inclusion-exclusion principle:

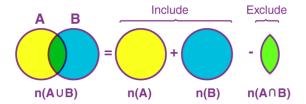
$$|A \cup B| = |A| + |B| - |A \cap B|$$



10/30

This elegant law is called the inclusion-exclusion principle:

$$|A \cup B| = |A| + |B| - |A \cap B|$$



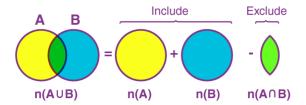
Question

Out of all students in a class, 20 people study Math, 15 study Physics, and 4 study both Math and Physics. How many students are there in total?

Aprikyan, Tarkhanyan Lecture 0 10 / 30

This elegant law is called the inclusion-exclusion principle:

$$|A \cup B| = |A| + |B| - |A \cap B|$$



Question

Out of all students in a class, 20 people study Math, 15 study Physics, and 4 study both Math and Physics. How many students are there in total?

What if there are three sets A, B and C?

Aprikyan, Tarkhanyan Lecture 0 10 / 30

Assume $A = \{ \emptyset, \# \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Assume $A = \{ \overrightarrow{o}, \Rightarrow \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

Assume $A = \{ \overrightarrow{o}, \Rightarrow \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

So in total, 4 such pairs.

Assume $A = \{ \overrightarrow{o}, \rightleftharpoons \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

$$\begin{array}{ccc}
(\bigcirc,\bigcirc) & (\bigcirc, \triangleleft) \\
(\triangleleft,\bigcirc) & (\triangleleft, \triangleleft)
\end{array}$$

So in total, 4 such pairs. Now take $B = \{ \{ \{ \}, \{ \}, \} \} \}$. How many pairs (b_1, b_2) can we form such that $b_1, b_2 \in B$?

Assume $A = \{ \overrightarrow{o}, \rightleftharpoons \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

$$\begin{array}{ccc}
(\bigcirc,\bigcirc) & (\bigcirc, \clubsuit) \\
(\clubsuit,\bigcirc) & (\clubsuit,\clubsuit)
\end{array}$$

So in total, 4 such pairs. Now take $B = \{ \{ \{ \}, \{ \}, \} \} \}$. How many pairs (b_1, b_2) can we form such that $b_1, b_2 \in B$?

Assume $A = \{ \overrightarrow{o}, \rightleftharpoons \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

$$\begin{array}{ccc}
(\bigcirc,\bigcirc) & (\bigcirc, \clubsuit) \\
(\clubsuit,\bigcirc) & (\clubsuit,\clubsuit)
\end{array}$$

So in total, 4 such pairs. Now take $B = \{ \{ \{ \}, \{ \}, \} \} \}$. How many pairs (b_1, b_2) can we form such that $b_1, b_2 \in B$?

$$\begin{array}{cccc} (\pm,\pm) & (\pm,\clubsuit) & (\pm,\varpi) \\ (\clubsuit,\pm) & (\clubsuit,\clubsuit) & (\clubsuit,\varpi) \\ (\clubsuit,\pm) & (\clubsuit,\clubsuit) & (\clubsuit,\clubsuit) \end{array}$$

In total, 9 such pairs.

11/30

Assume $A = \{ \overrightarrow{o}, \rightleftharpoons \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

So in total, 4 such pairs. Now take $B = \{ \{ \{ \}, \{ \}, \} \} \}$. How many pairs (b_1, b_2) can we form such that $b_1, b_2 \in B$?

In total, 9 such pairs. Do you see a pattern?

Assume $A = \{ \overrightarrow{o}, \rightleftharpoons \}$. How many pairs (a_1, a_2) can we form such that $a_1, a_2 \in A$?

Well, we can have:

So in total, 4 such pairs. Now take $B = \{ \{ \{ \}, \{ \}, \} \} \}$. How many pairs (b_1, b_2) can we form such that $b_1, b_2 \in B$?

$$\begin{array}{ccccc} (\pm,\pm) & (\pm,\clubsuit) & (\pm,\clubsuit) \\ (\clubsuit,\pm) & (\clubsuit,\clubsuit) & (\clubsuit,\clubsuit) \\ (\clubsuit,\pm) & (\clubsuit,\clubsuit) & (\clubsuit,\clubsuit) \end{array}$$

In total, 9 such pairs. Do you see a pattern?

Question

How many two-letter words can you form using the letters in "movie"?

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

What if we want to form pairs (a, b) such that $a \in A$ and $b \in B$?

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

What if we want to form pairs (a, b) such that $a \in A$ and $b \in B$?

For example, if

we can form the pairs:

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

What if we want to form pairs (a, b) such that $a \in A$ and $b \in B$?

For example, if

we can form the pairs:

$$(\begin{picture}(0,1) & (\begin{picture}(0,2) & (\begin{picture}(0,3) & (\be$$

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

What if we want to form pairs (a, b) such that $a \in A$ and $b \in B$?

For example, if

we can form the pairs:

$$(\begin{picture}(0,1) & (\begin{picture}(0,2) & (\begin{picture}(0,3) & (\be$$

Indeed, if you want to form such a pair, you have

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

What if we want to form pairs (a, b) such that $a \in A$ and $b \in B$?

For example, if

we can form the pairs:

$$(\begin{picture}(0,1) & (\begin{picture}(0,2) & (\begin{picture}(0,3) & (\be$$

Indeed, if you want to form such a pair, you have

$$\begin{pmatrix} 2 \text{ choices} \\ here \\ a \end{pmatrix}, b$$

Theorem

If there are n elements in a set A, the number of pairs (a_1, a_2) such that $a_1, a_2 \in A$ is n^2 .

What if we want to form pairs (a, b) such that $a \in A$ and $b \in B$?

For example, if

we can form the pairs:

$$(\begin{picture}(0,1) & (\begin{picture}(0,2) & (\begin{picture}(0,3) & (\be$$

Indeed, if you want to form such a pair, you have

$$\left(a, \underbrace{b}_{\text{and 3}\atop \text{choices here}}\right)$$

Given two sets A and B, the set of all pairs (a, b) (where $a \in A$ and $b \in B$) is called their **Cartesian product**:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Given two sets A and B, the set of all pairs (a, b) (where $a \in A$ and $b \in B$) is called their **Cartesian product**:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Note that the order of elements in the pair matters, i.e. $(\nearrow, 1) \neq (1, \nearrow)$.

Given two sets A and B, the set of all pairs (a, b) (where $a \in A$ and $b \in B$) is called their **Cartesian product**:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Note that the order of elements in the pair matters, i.e. $(\begin{cases} \begin{cases} \begin{case$

Example

Suppose

- $V = \{2, 3, 4, \dots, 10, J, Q, K, A\}$
- $S = \{ \lor, \bullet, \bullet, \bullet \}$

What is $V \times S$?

Given two sets A and B, the set of all pairs (a, b) (where $a \in A$ and $b \in B$) is called their **Cartesian product**:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

Note that the order of elements in the pair matters, i.e. $(\nearrow, 1) \neq (1, \nearrow)$.

Example

Suppose

- $V = \{2, 3, 4, \dots, 10, J, Q, K, A\}$
- $S = \{ \lor, \bullet, \bullet, \bullet \}$

What is $V \times S$? How many elements does it have?

Given two sets A and B, the set of all pairs (a, b) (where $a \in A$ and $b \in B$) is called their **Cartesian product**:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Note that the order of elements in the pair matters, i.e. $(\nearrow, 1) \neq (1, \nearrow)$.

Example

Suppose

- $V = \{2, 3, 4, \dots, 10, J, Q, K, A\}$
- $S = \{ \lor, \bullet, \bullet, \bullet \}$

What is $V \times S$? How many elements does it have?

Theorem,

If
$$|A| = n$$
 and $|B| = m$, then $|A \times B| = n \cdot m$.

If A and B are intervals, e.g.
$$A = [1, 5]$$
 and $B = [2, 5]$, then

$$A \times B =$$

If A and B are intervals, e.g. A = [1, 5] and B = [2, 5], then

$$A \times B = \{(x, y) \mid$$

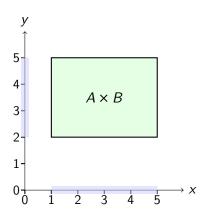
If A and B are intervals, e.g. A = [1, 5] and B = [2, 5], then

$$A \times B = \{(x, y) \mid 1 \le x \le 5, 2 \le y \le 5\}$$

If A and B are intervals, e.g. A = [1, 5] and B = [2, 5], then

$$A \times B = \{(x, y) \mid 1 \le x \le 5, 2 \le y \le 5\}$$

i.e. their Cartesian product is a rectangle:



Aprikyan, Tarkhanyan

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \triangleleft, \not \equiv \}$$

in a row?

In how many ways can we arrange the elements of

$$A = \{ \circlearrowleft, \blacktriangleleft, \neq \}$$

in a row?

Well, we can have:

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \blacktriangleleft, \frac{1}{2} \}$$

in a row?

Well, we can have:

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \blacktriangleleft, \frac{1}{2} \}$$

in a row?

Well, we can have:

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \blacktriangleleft, \frac{1}{2} \}$$

in a row?

Well, we can have:

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \blacktriangleleft, \frac{1}{2} \}$$

in a row?

Well, we can have:

$$3 \times 2 \times \dots$$
choices
for 2nd

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \blacktriangleleft, \frac{4}{9}, \frac{4}{9} \}$$

in a row?

Well, we can have:

$$3 \times 2 \times 1$$
choice for 3rd

In how many ways can we arrange the elements of

$$A = \{ \bigcirc, \blacktriangleleft, \frac{1}{2} \}$$

in a row?

Well, we can have:

Why so? Because if you want to form such a triplet, you have

$$3 \times 2 \times 1$$
choice for 3rd

options.

In general, if we have n elements, the number of ways to arrange them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

In general, if we have n elements, the number of ways to arrange them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

This number is called **factorial** of n and denoted by n!.

In general, if we have n elements, the number of ways to arrange them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

This number is called **factorial** of n and denoted by n!.

Question

How many ways can we arrange the letters in the word "pencil"?

In general, if we have n elements, the number of ways to arrange them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

This number is called **factorial** of n and denoted by n!.

Question

How many ways can we arrange the letters in the word "pencil"?

How many 3-letter words can we form using the letters in "pencil"?

In general, if we have n elements, the number of ways to arrange them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

This number is called **factorial** of n and denoted by n!.

Question

How many ways can we arrange the letters in the word "pencil"?

How many 3-letter words can we form using the letters in "pencil"?

Let's try to form such a 3-letter word. Since there are 6 letters in "pencil", we have:

Let's try to form such a 3-letter word. Since there are 6 letters in "pencil", we have:

Let's try to form such a 3-letter word. Since there are 6 letters in "pencil", we have:

$$6 \times \underbrace{5}_{\text{choices}} \times \dots$$

Let's try to form such a 3-letter word. Since there are 6 letters in "pencil", we have:

$$6 \times 5 \times 4$$
 choices for 3rd

options.

Let's try to form such a 3-letter word. Since there are 6 letters in "pencil", we have:

$$6 \times 5 \times 4$$

options.

In general, if we have n elements, the number of ways to arrange k of them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times (n-k+1)$$

Let's try to form such a 3-letter word. Since there are 6 letters in "pencil", we have:

$$6 \times 5 \times 4$$

options.

In general, if we have n elements, the number of ways to arrange k of them in a row (order matters!) is

$$n \times (n-1) \times (n-2) \times \ldots \times (n-k+1)$$

which can also be written as

$$\frac{n!}{(n-k)!}$$

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Since there are 10 choices for CEO,

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Since there are 10 choices for CEO, then 9 choices for CTO

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Since there are 10 choices for CEO, then 9 choices for CTO and 8 choices for CFO, the answer is

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Since there are 10 choices for CEO, then 9 choices for CTO and 8 choices for CFO, the answer is

$$10 \times 9 \times 8 = 720$$

18 / 30

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Since there are 10 choices for CEO, then 9 choices for CTO and 8 choices for CFO, the answer is

$$10 \times 9 \times 8 = 720$$

or, using the formula,

$$\frac{10!}{7!} = 720$$

Example

There are 10 employees in a company. How many ways can they choose a CEO, a CTO and a CFO (all different people)?

Since there are 10 choices for CEO, then 9 choices for CTO and 8 choices for CFO, the answer is

$$10 \times 9 \times 8 = 720$$

or, using the formula,

$$\frac{10!}{7!} = 720$$

What if the order does not matter, i.e. we only want to choose a team of 3 people out of 10 employees (everyone with the same position)?

Suppose $A = \{ \overrightarrow{\phi}, , , [f], , [f], , [f] \}$. How many ways can we choose 3 elements from A if the order does not matter?

Suppose $A = \{ \bigcirc, \blacktriangleleft, \not \in, \triangle, \}$. How many ways can we choose 3 elements from A if the order does not matter?

Well, if the order mattered, we would have

$$\frac{5!}{2!} = 5 \times 4 \times 3 = 60$$

ways.

Suppose $A = \{ \bigcirc, \triangleleft, \not \equiv, , \bigcirc, \}$. How many ways can we choose 3 elements from A if the order does not matter?

Well, if the order mattered, we would have

$$\frac{5!}{2!} = 5 \times 4 \times 3 = 60$$

ways.

But then, for example, the group $\{ \bigcirc, \neq \emptyset, \neq \emptyset \}$ would be counted 6 times:

Suppose $A = \{ \bigcirc, \blacktriangleleft, \{ , \triangle, \} \}$. How many ways can we choose 3 elements from A if the order does not matter?

Well, if the order mattered, we would have

$$\frac{5!}{2!} = 5 \times 4 \times 3 = 60$$

ways.

But then, for example, the group $\{ \bigcirc, \not =, \neq \}$ would be counted 6 times:

Since in 60 we have counted each group of 3 elements 6 times,

Suppose $A = \{ \bigcirc, \triangleleft, \not \equiv, , \bigcirc, \}$. How many ways can we choose 3 elements from A if the order does not matter?

Well, if the order mattered, we would have

$$\frac{5!}{2!} = 5 \times 4 \times 3 = 60$$

ways.

But then, for example, the group $\{ \bigcirc, \neq \emptyset, \neq \emptyset \}$ would be counted 6 times:

Since in 60 we have counted each group of 3 elements 6 times, we have to divide 60 by 6 to get rid of them:

$$\frac{60}{3 \times 2 \times 1} = 10$$
 or $\frac{5!}{2! \cdot 3!} = 10$

In general,

Theorem

The number of ways to choose k elements from n elements (without any particular order) is

$$\frac{n!}{(n-k)! \cdot k!}$$

[no need to memorize, just understand the reasoning]

In general,

Theorem

The number of ways to choose k elements from n elements (without any particular order) is

$$\frac{n!}{(n-k)! \cdot k!}$$

[no need to memorize, just understand the reasoning]

We usually denote this number by $\binom{n}{k}$ or $\binom{k}{n}$ (" n choose k").

In general,

Theorem

The number of ways to choose k elements from n elements (without any particular order) is

$$\frac{n!}{(n-k)! \cdot k!}$$

[no need to memorize, just understand the reasoning]

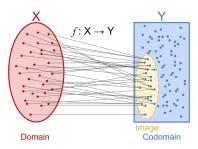
We usually denote this number by $\binom{n}{k}$ or $\binom{k}{n}$ or $\binom{k}{n}$ (" n choose k").

To sum up, the number of ways to choose k elements from n elements is:

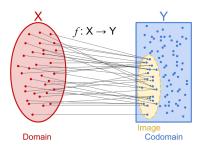
- $\frac{n!}{(n-k)!}$ if the order matters
- $\frac{n!}{(n-k)! \cdot k!}$ if the order does not matter

Finally, let's talk about functions.

Finally, let's talk about functions. Suppose we have two sets X and Y:



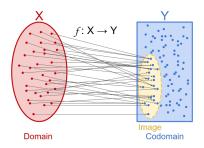
Finally, let's talk about functions. Suppose we have two sets X and Y:



If we assign to each element $x \in X$ exactly one element $y \in Y$, we say that we have defined a function from X to Y:

$$f:X\to Y$$

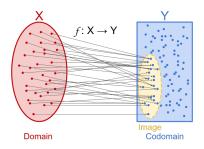
Finally, let's talk about functions. Suppose we have two sets X and Y:



If we assign to each element $x \in X$ exactly one element $y \in Y$, we say that we have defined a function from X to Y:

$$f: \underbrace{X} \rightarrow Y$$
domain of f

Finally, let's talk about functions. Suppose we have two sets X and Y:

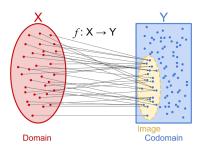


If we assign to each element $x \in X$ exactly one element $y \in Y$, we say that we have defined a function from X to Y:

$$f: X \to \underbrace{Y}_{\text{codomain of } t}$$

Aprikyan, Tarkhanyan Lecture 0 21/30

Finally, let's talk about functions. Suppose we have two sets X and Y:



If we assign to each element $x \in X$ exactly one element $y \in Y$, we say that we have defined a function from X to Y:

$$f:X\to Y$$

The value f(x) which corresponds to x is called the *image* of x, and x is called the *preimage* of f(x).

21/30

For example, assume A is the set of all students in one class, and B is the set of another class.

A

В

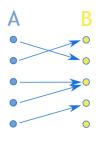
0

0

0

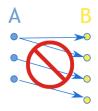
0

If each student in class A has a crush on exactly one student in class B, then we have defined a function from A to B:



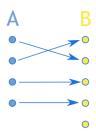
Aprikyan, Tarkhanyan Lecture 0 23 / 30

No student in class A can have a crush on two different students in class B (otherwise it would not be a function):



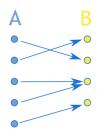
Aprikyan, Tarkhanyan Lecture 0 24/30

If no two students in class A have a crush on the same student in class B, then we say that the function is **injective** (or one-to-one):



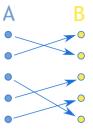
Aprikyan, Tarkhanyan Lecture 0 25 / 30

If to every student in class B there is at least one student in class A who has a crush on them, then we say that the function is **surjective** (or onto):

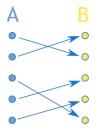


Aprikyan, Tarkhanyan Lecture 0 26 / 30

If f is both injective and surjective, then we say that it is **bijective**:



If *f* is both injective and surjective, then we say that it is **bijective**:



In this case, we can make pairs (couples) of students from A and B, and we can also define the inverse function

$$f^{-1}:B\to A$$

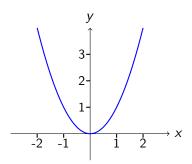
assigning to each student in B the one in A who has a crush on them.

Most commonly, our functions take numbers as inputs and return numbers.

Most commonly, our functions take numbers as inputs and return numbers.

For example, consider the function $f:\mathbb{R} \to \mathbb{R}$ defined by

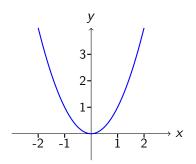
$$f(x) = x^2$$



Most commonly, our functions take numbers as inputs and return numbers.

For example, consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = x^2$$



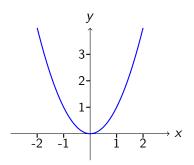
Question

Is f injective?

Most commonly, our functions take numbers as inputs and return numbers.

For example, consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = x^2$$



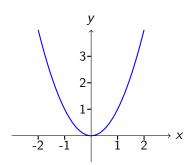
Question

Is *f* injective? Surjective?

Most commonly, our functions take numbers as inputs and return numbers.

For example, consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

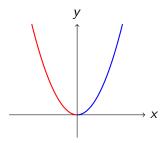
$$f(x) = x^2$$



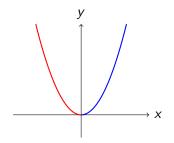
Question

Is f injective? Surjective? Bijective?

One more term to know: Notice how the graph of $f(x) = x^2$ is symmetric about the *y*-axis:

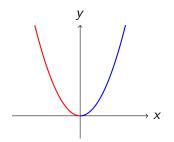


One more term to know: Notice how the graph of $f(x) = x^2$ is symmetric about the *y*-axis:



Or, in other words, f(-x) = f(x) for all $x \in \mathbb{R}$.

One more term to know: Notice how the graph of $f(x) = x^2$ is symmetric about the *y*-axis:



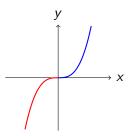
Or, in other words, f(-x) = f(x) for all $x \in \mathbb{R}$.

Definition

We say that f is an **even** function, if f(-x) = f(x) for all $x \in \mathbb{R}$.

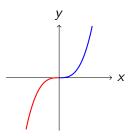
Sometimes, the graph is symmetric about the point (0,0), e.g.:

$$f(x) = x^3$$



Sometimes, the graph is symmetric about the point (0,0), e.g.:

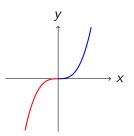
$$f(x) = x^3$$



Or, in other words, f(-x) = -f(x) for all $x \in \mathbb{R}$.

Sometimes, the graph is symmetric about the point (0,0), e.g.:

$$f(x) = x^3$$



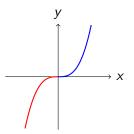
Or, in other words, f(-x) = -f(x) for all $x \in \mathbb{R}$.

Definition

We say that f is an **odd** function, if f(-x) = -f(x) for all $x \in \mathbb{R}$.

Sometimes, the graph is symmetric about the point (0,0), e.g.:

$$f(x) = x^3$$



Or, in other words, f(-x) = -f(x) for all $x \in \mathbb{R}$.

Definition

We say that f is an **odd** function, if f(-x) = -f(x) for all $x \in \mathbb{R}$.

Note that a function can be neither even nor odd, e.g. f(x) = x + 1.

Aprikyan, Tarkhanyan Lecture 0 30 / 30