Հղումներ / Links

Author

Metric.am

🐍 Python

2 - Conditions / Պայմաններ

Done, add links later

3 - String, list, range, functions on floats/lists

Done, add links later

4 - Loops / Ցիկլեր

Done, add links later

5 - List/String Methods + Ternary Operators, List Comprehensions

Done, add links later

6 - Tuple, Set, Dictionary

Done, add links later

7, 8 - Functions (գուցե երկու շաբաթ հատկացնենք)

Done, add links later

9 - Terminal, Working with multiple files, file I/O, Packages (os, random, time, tqdm)

Done, add links later ## 10 - Git / GitHub, Venvs, Anaconda + PEP8, clean code/architecture Done, add links later

11 - Exception Handling

Done, add links later

12 - Streamlit, Recustions, leftover material

Done, add links later

13 - Decorators

Done, add links later

14 OOP 1: Classes

Done, add links later

15 OOP 2: Inheritance, Polymorphism

Done, add links later

16 OOP 3: Encapsulation, Abstraction

Done, add links later

17 Data Classes, Generators, Iterators, Context Managers

Done, add links later

[] OpenAI API Video

June 25, Wednesday [] Practical, Classes

📦Packages

Data Science Packages

June 27, Friday [] NumPy + Smthing?

June 29, Sunday (perhaps skip)

July 2, Wednesday [] Pandas 1

July 4, Friday [] Pandas 2 + Profiling

July 6, Sunday (perhaps skip) [] Data Visualization

July 9, Wednesday [] Project 1

July 11, Friday [] Project 2

July 14 - 21 - Break

General Packages

[] Logging, Unittest (Pytest), Argparse (other CLI)

[] Scraping

[] Flask / FastAPI

[] Collections / functools [] pydantic [] Make [] docker [] pytest [] smthing argparse like [] dvc [] packaging [] zip [] smtp [] numba [] Sweetviz / pandas profiling

15 - Logging, Unittest (Pytest), Argparser

16 - Scraping

17 - Flask / FastAPI

18 - NumPy

19-20 - Pandas

21-22 - Data Visualization

23 - Some other packages (Streamlit, Dask, Sweetviz, Numba, …)

📈 Math

🧮 20-22.5 Linear Algebra

  • Vectors, vector operations, dot product, norm
  • Vector spaces and subspaces
  • Matrices, matrix operations
  • Geometric interpretation of matrices
  • Row echelon form
  • Determinant in 2x2 and 3x3 cases, trace
  • Determinant in general case
  • Systems of linear equations
  • Gauss-Jordan elimination
  • Inverse matrix
  • Linear independence
  • Basis, rank, dimension
  • Eigenvalues and eigenvectors
  • Positive/negative definite matrices
  • Decompositions

📈 22.5 - 24 Calculus

  • Limit of sequence and function
  • Derivative
  • Extrema of a function
  • Taylor polynomials
  • Indefinite integral, definite integral
  • Partial derivative
  • Gradient, directional gradient
  • More topics

⛰️ 25 - 27 Optimization

  • Quadratic forms and Sylvester’s criterion
  • Gradient Descent
  • Momentum
  • AdaGrad / RMSProp / ADAM
  • Second order methods
  • Constrained optimiziation
  • Evolutionary algorithms
  • Bayesian optimization
  • Multicriteria optimization

🎲 28 - 29 Probability Theory

  • Sample space, events, probability
  • Independence
  • Conditional probability, total probability
  • Bayes rule
  • Geometric probability
  • Random variable
  • PMF, CDF, PDF
  • Expected value, variance
  • Covariance and correlation
  • Distributions
  • Laws of large numbers
  • Central limit theorem

📊30 - 31 Statistics

  • Point estimation: Mean, median, mode
  • Estimator properties
  • MAP / MLE
  • Confidence intervals and hypothesis testing
  • P-values, type I and type II errors

🤖 Machine Learning

32 Linear Regression

  • Assumptions
  • Loss
  • Gradient based optimization
  • Normal Equation
  • Interpretation of Coefficients

33 - 34 Main Concepts

  • Encoding categoricals
  • Feature scaling
  • Train Val Test split (data leakage issue)
  • (Stratified) Cross validation
  • Regression evaluation metrics

35 - 36 More Regression + Main Concepts 2

  • Polynomial Regression
  • Under / Overfitting
  • Regularization
    • Ridge
    • Lasso
  • Hyperparameter Search
  • Feature Engineering
  • Outliers
  • Threshold tuning

37 Logistic Regression

  • Logistic regression
  • Log odds
  • Classification evaluation metrics

38 Trees

  • Decision tree
  • Bagging
  • Boosting
  • Notable models (i.e. LightGBM)

39 Model interpretation and Feature selection

40 Unsupervised Learning

  • KMeans
  • DBSCAN
  • Hierarchical
  • Clustering evaluation metrics

41 - 42 Neural Networks

43 - 44 Intro to Computer Vision

44 - 45 Intro to Natural Language Processing

46 - 47 Intro to Gen AI

Գուցե նաև KNN, SVM, Information Theory, Gaussian Process

Final Project

quarto html block

Flag Counter